Thirty-Ninth Annual Meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education

PME-NA® 2017

SYNERGY AT THE CROSSROADS

Editors:
Enrique Galindo
and Jill Newton

CONFERENCE PROCEE

5




Proceedings of the Thirty-Ninth Annual
Meeting of the North American Chapter of the
International Group for the

Psychology of Mathematics
Education

Indianapolis, IN USA
October 5-8, 2017

Editors
Enrique Galindo
Jill Newton



Proceedings of the 38th Annual Meeting of PME-NA ii

Citation

Author, A. A., & Author, B. B. (2017). Title of article. In E. Galindo & J. Newton, (Eds.),
Proceedings of the 39th annual meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education (pp. xxx-xxx). Indianapolis, IN:
Hoosier Association of Mathematics Teacher Educators.

ISBN

978-0-692-96530-6

Revision
These proceedings have been revised as follows.
* Duplicate page numbers were removed from chapter 13.
* The correct paper for the working group “Developing a Research Agenda of Mathematics
Teacher Leaders and their Preparation and Professional Development Experiences” has
been included in chapter 14.
* The table of contents for chapter 14 has been updated.

Articles published in the Proceedings are copyrighted by the
authors. Permission to reproduce an article or portions from
an article must be obtained from the author.

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Proceedings of the 38th Annual Meeting of PME-NA iii

PME came into existence at the Third International Congress on Mathematical Education
(ICME-3) in Karlsrithe, Germany in 1976. It is affiliated with the International Commission for
Mathematical Instruction. PME-NA is the North American Chapter of the International Group
of Psychology of Mathematics Education. The first PME-NA conference was held in Evanston,
Mlinois in 1979.

The major goals of the International Group and the North American Chapter are:

1. To promote international contacts and the exchange of scientific information in the
psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the
cooperation of psychologists, mathematicians, and mathematics teachers;

3. To further a deeper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.

Membership is open to people involved in active research consistent with PME-NA’s aims or
professionally interested in the results of such research. Membership is open on an annual basis
and depends on payment of dues for the current year. Membership fees for PME-NA (but not
PME International) are included in the conference fee each year. If you are unable to attend the
conference but want to join or renew your membership, go to the PME-NA website at
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and
click on “Membership” at the left of the screen.
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Welcome

On behalf of the 2017 PME-NA Steering Committee, the 2017 PME-NA Local Organizing
Committee, and the Hoosier Association of Mathematics Teacher Educators (HAMTE), we
welcome you to the 39th Annual Meeting of the International Group for the Psychology of
Mathematics Education - North American Chapter held at the Crowne Plaza Indianapolis
Downtown Union Station in Indianapolis, Indiana.

The theme of this year’s conference is Synergy at the Crossroads: Future Directions for Theory,
Research, and Practice. The metaphor of crossroads was inspired by the conference venue - the
historic Indianapolis Union Station, as well as by the State motto, a reference to how Indiana is
connected to the rest of the United States. PME-NA 39 includes research presentations,
discussion, and reflection focusing on four driving questions connecting to the metaphor of
crossroads: 1) What have we learned from the routes we have traversed, what are potential routes
for mathematics education research in the future, and what considerations are relevant as we
make choices about future directions in mathematics education? 2) How do we address issues of
access and equity within mathematics education today? 3) How can we lay the groundwork for
future crossroads or intersections between theory, research, and practice? and 4) What barriers
within research traditions, educational policy, and teaching practice impede researchers’,
students' and teachers' success and how can we work to overcome these barriers?

Rochelle Gutiérrez will present the opening plenary talk on Thursday evening, Living
Mathematx: Towards a Vision for the Future, into which she brings ideas from
ethnomathematics, postcolonial theory, aesthetics, biology, and Indigenous knowledge in order
to propose a new vision for practicing mathematics. Edd Taylor will serve as discussant for the
talk. In the Friday afternoon plenary session, Les Steffe will present several crucial radical
constructivist research programs to argue that rather than repeat attempts to make wholesale
changes in mathematics education based on mathematical knowledge for adults, what is needed
is to construct mathematics curricula for children that is based on the mathematics of children.
Two of Dr. Steffe’s former students, Erik Tillema and Amy Hackenberg, will serve as discussants,
providing varied perspectives on the continuation of his work. Saturday’s plenary session,
Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice will
include a historical overview by Maggie McGatha followed by a discussion panel composed of
Dionne Cross and Jane Mahan, facilitated by Sheryl Stump. A panel discussion of technology in
mathematics education with representatives from the three PME-NA member countries will
complete the plenaries on Sunday: Ana Isabel Sacristan (Digital Technologies in Mathematics
Classrooms: Barriers, Lessons and Focus On Teachers); Nathalie Sinclair (Crossroad Blues); and
Karen Hollebrands (A Framework to Guide the Development of a Teaching Mathematics with
Technology Massive Open Online Course for Educators [MOOC-ED]).

This year’s conference will be attended by about 550 researchers, faculty and graduate
students from around the world including the US, Mexico, Canada, Turkey, Australia, South
Korea, Malawi, and Iran. We received 529 submissions. The acceptance rate was 39% for
research reports as research reports, 57% for brief research reports as brief research reports, 78%
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for posters as posters, and 100% for working groups. The accepted proposals included 75
research reports, 142 brief research reports, 167 posters, and 13 working groups. Continuing the
efforts started at last year’s conference there will be some presentations in Spanish, as well as
simultaneous oral interpretation (from English to Spanish, and from Spanish to English) for
selected sessions.

We would like to thank the many people who generously volunteered their time over the past
year in preparation for this conference. This includes members of the PME-NA Local Organizing
Committee, the PME-NA Steering Committee, Purdue Conferences, strand leaders, proposal
authors and reviewers. We appreciate all of your hard work and dedication, and your
commitment to ensure a high-quality conference program. We also wish to thank the generous
financial support of the HAMTE member universities across Indiana.

Jill Newton
PME-NA 39 Conference Co-Chair PME-NA 39 Conference Co-Chair
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LIVING MATHEMATX: TOWARDS A VISION FOR THE FUTURE'

Rochelle Gutiérrez
University of Illinois at Urbana-Champaign
rgl @illinois.edu

This paper offers specific implications for teaching and learning and brings into conversation ideas
from ethnomathematics (including Western mathematics), postcolonial theory, aesthetics, biology,
and Indigenous knowledge in order to propose a new vision for practicing mathematics, what I call
mathematx. I build upon the work of sustainability in mathematics education and suggest we need to
think not only about more ethical ways of applying mathematics in teaching and learning but
question the very nature of mathematics, who does it, and how we are affected by that practice.

Keywords: Equity and Diversity, Instructional Activities and Practices

We need to be constantly considering the forms of mathematics and what they seek to deal with.
As society presents new demands, new technologies, new possibilities, we must ask ourselves
whether our current version of mathematics is adequate for dealing with the ignorance that we
have (Gutiérrez and Dixon-Roman, 2011, p. 32).

The ecology of knowledges enables us to have a much broader vision of what we do not know, as
well as what we do know, and also to be aware that what we do not know is our own ignorance,
not a general ignorance (Santos, 2007, p. 43).

We are all the product of our worldview—even scientists who claim pure objectivity...Science
and traditional knowledge may ask different questions and speak different languages, but they
may converge when both truly listen to the plants (Kimmerer, 2013, p.163, 165).

Everyday, we accumulate more evidence that humans are destroying the planet. We need only
look at the increasing levels of air pollution, climate change, destruction of the ozone layer, and the
elimination of various plant and animal species throughout the world to know that we cannot
continue with the forms of living we have come to consider “normal.” However, not until recently
has the public become aware that the effects will deeply impact us in our lifetime (Kolbert, 2015).
One might ask: what role(s) should mathematics play in stopping or slowing the rate of such
destruction of the environment? The field of mathematics might serve mainly to: describe the nature
of the global problem; offer excellent models for prediction; or provide efficient data analysis and
statistics for calculating risk. Mathematics might also offer something else altogether. In what way(s)
are current forms of mathematics teaching and learning consistent with the kinds of environmental
crises we face? Do we need to think differently about our relationship between mathematics, humans,
and the planet? And, if so, how?

In this article, I seek to bring into conversation ideas from ethnomathematics (including Western
mathematics), postcolonial theory, aesthetics, biology, and Indigenous knowledge in order to propose
a new vision for practicing mathematics, something I refer to as mathematx. I do so in order to
promote interaction between different knowledges, different ways of knowing, and different
knowers. I build upon the work of sustainability in mathematics education and suggest we need to
think not only about more ethical ways of applying mathematics in teaching and learning but
question the very nature of mathematics, who does it, and how we are affected by that practice. I
introduce the concepts of In Lak’ech, reciprocity, and Nepantla to suggest we learn from other-than-
human persons, which, in turn, may change our relationships with them. Along the way, I underscore
with examples from biology the potential limitations of current forms of mathematics for
understanding/interacting with our world and the potential benefits of considering other-than-human
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persons as having different knowledges to contribute. Finally, I suggest implications for teaching and
learning.

Identifying the Problem

The relationship between mathematics, humans, and the planet has been one steeped too long in
domination and destruction (O’Neil 2016; Martinez 2016). Due in large part to the way research is
funded, the field of mathematics is often in the service of warfare and economics (BooB-Bavnbek
and Hoyrup 2003; Gutiérrez 2013; Martinez 2016; O’Neil 2016; Porter 1995). With an emphasis on
quantifying, categorizing, and reducing complex and multi-layered relationships between persons to
mere abstractions, mathematics often supports a fallacy that modeling, big data, and software can
solve anything. Some might suggest there is nothing inherent in the practice of mathematics that
leads to domination; we simply need to follow more ethical practices in applying mathematics in the
world around us.

Highlighting this role of domination and arguing for a new form of teaching mathematics, Coles
and colleagues (2013) note,

The history of humanity’s relationship with the natural environment, at least in the West, can be
summarized in one word: domination. The natural environment has been seen as a source of food
and raw materials all to be placed in the service of human projects. Where the natural
environment gets in the way of such projects, we simply blast our way through... (p. 4)

In an attempt to change this relationship, Coles and colleagues suggest we begin by altering the
forms of teaching and the curriculum to which students are exposed. By situating mathematical
problems in contexts that relate to such issues as climate change, students will have the opportunity
to develop a new relationship to mathematics and new uses of mathematics in making life decisions.
That is, students can be encouraged to analyze real-world statistics of temperatures in different
regions to make conclusions about both the rates by which the climate is changing and the
probabilities that the climate will continue to change. In this way, students would also be allowed to
ponder such questions as what kind of mathematical information is necessary to address climate
change? What mathematics should the average citizen know in order to make informed decisions
about the consequences of their actions and the actions of others? Learning mathematics in real world
social and political contexts can help students see relationships between the decisions humans make
and the destruction of the planet, thereby urging them to take action to save the planet. In this way,
mathematics education can more clearly highlight the roles of ethics (e.g., Atweh 2013; Boylan
2016) and practicality as they relate to the practice of mathematics. Thus, shifting the curriculum to
more sociopolitical contexts (Gutiérrez 2010/2013"), what some would refer to as teaching
mathematics for social justice (Frankenstein 1990; 1995; Gutstein 2006), could broaden the service
of mathematics beyond economics and warfare.

However, attending to when and how mathematics is in the service of sustainability or ethics may
be a necessary but insufficient step towards new relationships between humans, mathematics, and the
planet (Gutiérrez, 2002). This, for me, has been one limitation of social justice mathematics (Gutstein
2003; 2006; 2007), as it tends to assume we will keep intact as “classical” what I refer to as
“dominant” mathematics rather than challenging whether that version or any single version should
remain central. In the social justice mathematics tradition, students are taught to use classical
mathematics as a tool to read and write the world, in order to develop their sociopolitical
consciousness and mathematical proficiencies. But, in general, the tool itself is not questioned.
Recognizing the limitations of using the master’s tools to dismantle the master’s house (Lorde 1984)
leads me to argue that we must also be willing to question and reconceptualize what counts as
mathematics in the first place, thereby taking up issues of epistemology and ontology.
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I am not alone in suggesting we need to reconsider our definitions of mathematics in light of our
current state of global crises. For example, Appelbaum (2016) suggests a different approach through
curriculum, where a key component is questioning what counts as mathematics.

..one key curriculum question that can no longer be pushed to the side is how very narrow,
Western, “rational” conceptions of what mathematics “is” have continued to be wielded
implicitly as tools of epistemicide, obliterating alternatlve epistemologies of number, size,
quantity, possibility, shape, algorithmic problem solving, analogic representation, and other
extended components of mathematical thinking and living. (p. 5)

Similarly, Boylan (2016) considers the role of mathematics in relation to the planet and argues,

An ecological ethics calls not only for an environmentally informed critical mathematics
education but also for a critique of the social construction of mathematics itself as separate and
disconnected from the earth (p. 9).

The Program Ethnomathematics offers a useful starting point for broadening the definition of
mathematics, something I will discuss later in this article.

Not only must we: a) be conscious of the ways mathematics can dominate and b) constantly
question what counts as mathematics and who decides, we must also c) think about how we, as living
beings, practice mathematics as we interact with others and ourselves. As we begin to reimagine
mathematics, we have the opportunity to reimagine the mathematician—who is considered a
mathematician as well as how are mathematicians influenced by the mathematics they do? Many of
the current efforts to reconsider mathematics and its role in our global society tend to rely upon a
utilitarian version of mathematics that allows us to better survive on this planet. [ am suggesting that
a form that describes moving through the world and relates to all living beings is more likely to
change our relationships with each other in this universe or in others. We need a definition that
acknowledges mathematics as a verb and how that practice relates to our bodies, minds, and
intentions. For that, we might consider our philosophical stance.

Much of the philosophical research produced in mathematics education centers on European
thinkers. For example, we are abundant with theories of postmodernism, poststructuralism, and
psychoanalysis that regularly draw upon such writers as Deleuze and Guattari, Ranciere, Foucault,
Lacan, Badiou, Derrida, and Freud. As a Chicanx scholar, a cis gender female with Raramuri™ roots,
I seek to decenter the field’s overreliance on Whitestream views. I use the term Chicanx (as opposed
to Chicano, Chicana/o, or Chican@) as a sign of solidarity with people who identify as lesbian, gay,
bisexual, transgender, queer, questioning, intersexual, asexual, and ‘[wo—spiritiV (LGBTQIAZ2S).
Chicanx represents both a decentering of the patriarchal nature of the Spanish language whereby
groups of men and women are normally referred to with the “0” (male) ending as well as a rejection
of the gender binary and an acceptance of gender fluidity. The “x” signifies a variable to represent
any gender form. My choice to use this term reflects my respect for how people choose to name
themselves.

In this article, I introduce three Indigenous concepts that have guided my work over the years—
In Lak’ech, Nepantla, and reciprocity—and suggest they can serve as guiding principles of a new
practice of mathematics.

Indigenous Epistemologies
Why privilege Indigenous concepts when considering the relationship between mathematics,
humans, and the planet? The answer to that question lies partly in the way (Western) mathematics is
viewed as universal (being able to explain everything in reality) and highly valued in society. When
challenges of discontinuity or undecidability arise, mathematicians often protect the universal view
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by suggesting that mathematics still holds true if we simply begin with different axioms (Barrow
1992). Yet, no knowledge could fully describe or attend to our universe and our relations with/in it. If
we look to the role that Aboriginal” knowledges have played in the reading of signs of distress from
the land (i.e., predicting the global crises we face), the preservation of biodiversity, and the role of
survival in general, we see the limits of Western mathematics/science practices as a means for
intervention (Berkes et al. 2000; Brayboy and Maughan 2009; Cajete 1999; Deloria 1979; Gonzalez
2001; Heinrich, et al. 1998; LaDuke 1994; Little Bear 2000; 2009; Tallbear 2013; Watson-Verran
and Turnbull 1995). I claim neither that all Western thought is colonizing/hegemonic nor that all
Indigenous thought does not have the ability to dominate. However, modern Western thinking has
been hegemonic in ways that erase Indigenous thought. In this way, I use the term “Western” to refer
to the modern version that has tended to colonize and “Indigenous” or “Aboriginal” to refer to the
version that has tended to be erased throughout history.

Acknowledging the limits of Western mathematics is not to discount the value of mathematical
knowledge in other realms. However, such limitations suggest that, in contrast to the global push to
get more students to enter Science, Technology, Engineering, and Mathematics (STEM) fields in
order to deal with the complexity and challenges in our world, we cannot fully address our problems
through a reliance on Western mathematics/science.

Santos (2007) suggests that the problem of domination may lie not in which knowledge is
authoritative, but rather in our overreliance on any single knowledge as authority. As such, he
suggests an epistemology of knowledges, underscoring the view that all knowledge is legitimate,
partial, and interdependent. In fact, with respect to ignorance, learners do not just lack knowledge,
they have “misknowledges” (i.e., stereotypes, incorrect knowledge) about others (Kumashiro 2001).
And, those misknowledges may not easily be replaced by the introduction of new knowledge because
desconocimiento (ignorance) can be a “refusal to know” when what is new disrupts what was
previously believed to be true (Anzaldaa 2000).

Yet, from a postcolonial perspective, it is important to unlearn what one thinks one knows, both
to recognize a form of epistemological arrogance (thinking that one’s ways of knowing are superior
to others’) and to learn to see oneself in relation to others (Andreotti, Ahenakew, and Cooper 2011).
Such a perspective acknowledges that our ignorance is our own, not a general form that cannot be
known or is not yet known (Santos 2007). That is, just as there is no unity of knowledge, there is no
unity of ignorance. Each of us has knowledge and ignorance that is, to a certain extent, unique.
Consistent with this epistemological pluralism, some scientists have argued against trying to develop
a theory of everything (Gleiser 2015).

Ecology of knowledges does not follow a single abstract universal hierarchy among knowledges.
Rather, it sees knowledge practices as context dependent. In that sense, it recognizes that different
knowledges can address our understanding and ability to relate to one another depending upon our
different purposes (e.g., the ways we aim to connect, the problems we seek to solve, the ways we
invite joy into our lives) (Little Bear 2009). For example, by seeking to be predictive, generalizable,
reductionist, and quantifiable in nature, Western perspectives tend to privilege knowledge as a form
of (re)presentation and explanation of reality (Aikenhead and Michell 2011). Yet, given the global
crises we face, we might be better served by knowledge as action—a form of intervention (Santos
2007; Andreotti 2011).

Given these different purposes, it is important to create inter-knowledges, whereby learning
another’s knowledge does not negate knowing one’s own knowledge (Santos 2007). In this way,
learning how other living beings perform mathematics does not eliminate what is known in terms of
academic mathematics. But, it does help us know what we do not know. Recognizing these inter-
knowledges can go a long way towards embodying humility and establishing the need for
responsibility, and therefore reciprocity, toward another, as opposed to for another (Spivak, 1987).
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While Santos is referring to an epistemology of knowledges that would include
scientific/mathematical versus social scientific, I am arguing that within mathematics, we might
acknowledge and value an epistemology of knowledges. That is, mathematically, we might come to
see that different ways of knowing, different knowers, and different forms of knowledge are all
legitimate, partial, and interdependent. Epistemological pluralism recognizes that there will be
tensions, contradictions, and politics in translating Indigenous knowledges into Western
categories/languages (Andreotti, et al. 2011). As such, an epistemology of knowledges is
destabilizing because it interrogates the politics of knowledge and, unlike Western knowledge, does
not presume causal outcomes—that is, that we can know the potential from any given actual.
Therefore, the production of knowledge is an ongoing process that is not cumulative but relational.

Centering Indigenous Knowledges

To be clear, there is no universal “Indigenous worldview.” Within the US, alone, there are 567
peoples federally recognized as American Indian and many more that are not recognized. Within
Mgéxico, there are 62 peoples recognized as Indigenous, comprising 13 percent of the nation’s
population. Within Canada, there are 634 peoples recognized as First Nations, plus peoples who are
Métis and Inuit, all accounting for 5.6 percent of the nation’s population. And, these populations
cover only North America, not the globe. The use of particular languages and ties to particular lands
create unique views held by Aboriginal peoples throughout the world and by individuals within those
groups. And, many Aboriginal writers refuse to refer to themselves as Indigenous, Indian, or First
Nations, as those categories are reflections of a colonizing history that blurs specificity. Even so, at
times, “strategic essentialism” (Spivak 1987) is important for joining peoples and advancing common
resistance tactics. As such, [ speak of commonalities across the range of Indigenous knowledges. The
perspectives I share are my view and do not necessarily reflect the views of others.

Indigenous knowledges recognize that we are part of a system of intelligent and sentient beings,
also referred to as persons, with interconnected spirits, including rocks and bodies of water. Plants,
for example, have lived on this planet for millions of years before humans. In that sense, plants are
our older brothers/sisters and have developed ways of efficiently using space, relating with other
living beings, and sustaining life not just for themselves but for others, often with few resources at
any given moment. They have been able to withstand long droughts, communicate about impending
dangers, and collaborate in order to protect others in the community in ways that appear to be selfless
acts. They have much to teach us; and we may have something to teach them. Breaking with a
human/non-human binary is consistent with queer theory, which recognizes the violence that is
justified when some are viewed to be more human than others (Chen 2012).

Our choice to destroy the planet to serve our immediate/capitalistic/technology needs is a form of
settler colonialism that perpetuates violence. That is, because a Western worldview does not consider
plants, animals, and rocks as living beings of equal value with the same rights to this universe as
humans, the result is that plants, animals and rocks suffer the same treatment as Indigenous peoples
have endured throughout time. For example, like American Indians who were stripped of their lands
and communities and forced to live in boarding schools, plants are yanked from their families and
forced to assimilate into Western ways of doing things (e.g., to become suburban gardens). By
respecting animals, plants, and even rocks as living beings, we can avoid some of the human/material
binary that has plagued the sciences in the past.

By referring to humans as a young species, I do not mean to imply a sense of posthumanism or
transhumanism. That is, [ am not looking to make humans better or into a fuller version of
themselves by combining with technology, fiction, or art (Haraway 1990; but also Chela Sandoval’s
extension). An Indigenous perspective, for me, seeks not to transform humans into another form of
being; rather it serves to help us recognize our place in this world as the younger brothers/sisters of
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animals, plants, and rocks who have much to teach us about making sense of and remaining
connected to this planet and possibly other planets. In this sense, by changing our world view—how
we move through this world and possibly into others—we will necessarily change ourselves, but not
in a way that is separate from other living beings, not in a way that is necessarily tied to technology.
There may be things we cannot yet access or understand because we are a young species. Other
persons may have ways of accessing information that can be helpful for us.

While our Elders have long spoken of the sentient capabilities of plants and rocks and of the
collective spirit they/we share, only recently have modern scientists begun to acknowledge that claim
with experiments that prove this to be the case, suggesting trees are sentient and intelligent (Haskill
2017; Jahren 2017; Wohlleben 2016). For example, tracing isotopes of carbon dioxide gas offered to
sample trees shows they turn that carbon dioxide into sugars that travel down through the trunk and
use a complex system of roots, fungi, and mycelium to share that resource with other trees nearby,
even trees of a different species (Simard et al. 2012). Similarly, when a tree is injured or attacked by
pests, it is able to communicate by way of pheromones to nearby trees to tell them to start changing
the chemistry of their leaves to be unfavorable to the intruder (Wohlleben 2016). And, mother trees
are able to both reduce their root system to make room for their offspring as well as send defense
signals through their mycorrhizal network to increase the resistance of their offspring to future stress
(Teste, et al. 2009).

Beyond embracing the intelligence and sentience of other living beings, Indigenous
epistemologies connect place, body, spirit, and consciousness. They reflect understandings of land,
history, culture, identity relationships, and therefore, politics (Deloria 1979). Many Indigenous
knowledges have been developed with roots in survivance; that is, not surviving in the colonialist
depiction of escaping catastrophe or being positioned as victims, but resisting dominance in a way
that renews Indigenous knowledges that are particular and have always been present (Vizenor 2008).
While there are many Indigenous concepts that could be fruitful to revisioning mathematics, I present
three that have been important in my upbringing. I do so in order to set the stage for an epistemology
of knowledges that can guide our practice of mathematics.

In Lak’ech

The Mayan definition of human being (huinik’lil) translates to “vibrant being” in recognition of
the idea that all human beings are part of a universal vibration (Arguelles 1987; Paredez 1964).
Acknowledging that all beings are connected, Mayan philosophy includes the important concept of
In Lak’ech woven into everyday thought and action. When a person meets another, they begin with
the saying In Lak’ech (You are the other me), to which the receiver responds with Ala K’in (I am the
other you). This greeting highlights for all persons (human and other-than-human) their connection
with each other and the need to protect each other. Consistent with Indigenous knowledge, I use the
terms “living beings” and “persons” interchangeably, as each term refers to all things living.

Seeing a version of oneself in other living beings or persons is a powerful reminder to move
through the world with compassion, gratitude, and interdependence. For me, In Lak’ech suggests that
if we look closely, we can see ourselves in others and others in us, but not in a way that implies an
erasure of our uniqueness, even while recognizing that uniqueness does not imply a sense of self
without others. To be clear, In Lak’ech does not translate to “I am you; You are me.” Seeing a
version of oneself in others and others in us is a kind of mirror, an affirmation; while the concept also
recognizes we are not exactly the same. In the same way that a mirror refracts light, produces words
that are backwards, and has imperfections from the glass, In Lak’ech reminds us that each person is
unique. In this sense, other persons also serve as a kind of window, a way of viewing another world,
another self, another (possibly better) you.
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Over time, Chicanx scholars have brought the concept of In Lak’ech into poems and theater as
reminders of how we should move through the world.

T eres mi otro yo.

You are my other me.

Si te hago dafio a ti,

If I do harm to you,

Me hago dafio a mi mismo.

I do harm to myself.

Si te amo y respeto,

If I love and respect you,

Me amo y respeto yo.

I love and respect myself. (Valdez and Paredez n.d.)

Through this poem and other writings (e.g., Valdez 1971), Valdez highlights the ways in which
Chicanx might relate to others in order to move with the cosmos. The meaning of In Lak’ech is
similar to the Lakota saying Mitakuye Oyasin “we are all related” (Cajete 1999 cited in Hatcher et al.
2009). The idea that we are all related can, in some ways, bring us joy, a simultaneous affirmation of
self and others. Building upon the idea that we are all interconnected, an Indigenous production of
knowledge to benefit others is in opposition to knowledge production as performance that benefits
mainly oneself and that is seen in most White institutions or places that value Western thought.
Brayboy and Maughan (2009) remind us,

Indigenous communities have long been aware of the ways that they know, come to know, and
produce knowledges, because in many instances knowledge is essential for cultural survival and
well-being. Indigenous Knowledges are processes and encapsulate a set of relationships rather
than a bounded concept, so entire lives represent and embody versions of IK (p. 3).

Reflecting these relationships, In Lak’ech focuses not on description of reality but on movement
through the world and metaphysics. By metaphysics, I simply mean a set of first principles by which
we make sense of the world around us (Deloria 1979).

Reciprocity

Extending the idea of In Lak’ech, the second concept upon which I draw is reciprocity. The
concept of reciprocity highlights the idea that different persons have different strengths and needs,
and thus must rely on others for what they lack. More than simply recognizing that reciprocity
enables persons to do things they could not otherwise do alone, it underscores a kind of ethic that is
valued in maintaining harmony of the cosmos. In this sense, reciprocity is not only the productive
thing to do, it is the right thing to do. Whereas In Lak’ech acknowledges the nature of the
relationship between self and others, reciprocity highlights the actions that should result.

As a botanist and a member of the Citizen Potawatomi Nation, Kimmerer (2013) weaves the
view of a scientist with an Indigenous view on the role of reciprocity and suggests that when we
honor other living beings (e.g., plants), it changes our relationships with them. She says,

When I speak of the gift of berries, I do not mean that Fragaria virginiana has been up all night
making a present just for me, strategizing to find exactly what I’d like on a summer morning. So
far as we know, that does not happen, but as a scientist [ am well aware of how little we do know.
The plant has in fact been up all night assembling little packets of sugar and seeds and fragrance
and color, because when it does so its evolutionary fitness is increased. When it is successful in
enticing an animal such as me to disperse its fruit, its genes for making yumminess are passed on
to ensuing generations with a higher frequency than those of the plant whose berries were

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 9

inferior...what I mean is that our human relationship with strawberries is transformed by our
choice of perspective...when we view the world this way, strawberries and humans alike are
transformed. The relationship of gratitude and reciprocity thus developed can increase the
evolutionary fitness of both plant and animal. (p. 29-30)

Can we come to understand mathematics as a living practice that needs actors and can respond to
their needs? Are there already ways in which these concepts play into mathematics?

Kimmerer highlights how in the Thanksgiving Address, humans are reminded of the importance
of balance and harmony, “We have been given the duty to live in balance and harmony with each
other and all living things” (p. 107) and she asks the non-Native reader, “What would it be like to be
raised on gratitude, to speak to the natural world as a member of the democracy of species, to raise a
pledge of interdependence?” (her emphasis, p. 112)

This is very similar to Cajete’s notion of laws of interdependence. What might it look like to
view mathematics (what it is, how we practice it, who is considered a mathematician, what
knowledge we produce) as having a basis in interdependence? Kimmerer expands,

Cultures of gratitude must also be cultures of reciprocity. Each person, human or no, is bound to
every other in a reciprocal relationship. Just as all beings have a duty to me, I have a duty to
them. If an animal gives its life to feed me, I am in turn bound to support its life. If I receive a
stream’s gift of pure water, then I am responsible for returning a gift in kind. An integral part of a
human’s education is to know those duties and how to perform them. (Kimmerer, p. 114)

If we keep in mind our duties to others, might we think about the forms of mathematics we are
producing and practicing as well as how those forms impact other persons, not just ourselves or other
humans?

In describing the relationship between beans, corn, and squash, referred to collectively as Las
Tres Hermanas (the Three Sisters), Kimmerer highlights, for me, the particular way in which these
sisters perform mathematics.

The corn stands eight feet tall; rippling green ribbons of leaf curl away from the stem in every
direction to catch the sun. No leaf sits directly over the next, so that each can gather light without
shading the others. The bean twines around the corn stalk, weaving itself between the leaves of
corn, never interfering with their work. In the spaces where corn leaves are not, buds appear on
the vining bean and expand into outstretched leaves and clusters of fragrant flowers. The bean
leaves droop and are held close to the stem of the corn. Spread around the feet of the corn and
beans is a carpet of big broad squash leaves that intercept the light that falls among the pillars of
corn. Their layered spacing uses the light, a gift from the sun, efficiently, with no waste. The
organic symmetry of forms belongs together; the placement of every leaf, the harmony of shapes
speak their message. Respect one another, support one another, bring your gift to the world and
receive the gift of others, and there will be enough for all. (p. 131-132)

Phyllotaxis, the study of the ordered position of leaves on a stem, highlights the fact that many
plants grow in ways that mirror “Fibonacci*™ numbers and the ratios of two consecutive numbers
tend towards the golden ratio (Douady and Couder 1992). Interestingly, scientists who have studied
Las Tres Hermanas have documented that when grown together, they out-produce what the plants
would if cultivated individually (Mt. Pleasant 2006). That is, the corn makes light available; the
squash reduces weeds; and the beans turn atmospheric nitrogen into mineral nitrogen fertilizer.
Reciprocity is modeled in their relationship. This form of reciprocity is also present in research
methods used by indigenous scholars and scholars of color (e.g., Dance, Gutiérrez, and Hermes 2010;
Kovach 2009; Rigney 1999; Smith 1999).
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Drawing upon ten years of teaching integrative science that acknowledges both Western science
and Indigenous sciences, Hatcher et al., (2009) argue that knowledge is only passed on from one
living being to another when a relationship between the two is formed and when the receiver is
ready. In this sense, knowledge is a verb; teacher and learner both play constructive parts in it,
highlighting the role of reciprocity. In fact, the Mi’kmaq word netukulimk means to “develop the
skills and sense of responsibility required to become a protector of other species.” While a
Whitestream view might privilege the problem solving/utilitarian aspect of reciprocity, I see
reciprocity (along with In Lak’ech) as related to experiencing connections and joy—knowing that
one’s actions are positively affecting oneself and others.

The overall point I am making is for us to live in harmony, without domination, as a form of
metaphysics, and to continue to note the similarities and differences between our modes of being and
those of other-than-human living beings. Recognizing other persons as having something to “teach”
us is not to begin with a stance that other living beings are a means to our end, in order to better
ourselves and our time on this planet or in our multiverse, though that can be a byproduct. Rather,
this stance is simply reflective of a deep belief that we must show respect for others, a form of ethics,
because in doing so, we are showing respect for ourselves, a frame of mind consistent with In
Lak’ech.

Nepantla
Nepantla is the third concept upon which I draw. Nepantla is the Nahuatl (Aztec) term for the
interstitial space between worlds. Gloria Anzaldta explains,

Nepantla can be seen in the dream state, as well as in transitions across borders of class, race, or
sexual identity. Nepantla experiences involve not only learning how to access different kinds of
knowledges—feelings, events in one’s life, images in-between or alongside consensual reality.
They also involve creating your own meaning or conocimientos". (Anzaldta 2000; p.267)

In many ways, Nepantla serves as a space of tensions, of multiple realities. Anzaldua highlights
those tensions, explaining how as a lesbian Chicana poet, she is neither fully accepted by her White
feminist colleagues who do not acknowledge her Indigeneity nor by the Chicano community who
does not recognize her as a lesbian. She is neither and both at the same time; she is in Nepantla. The
same could be said for people who identify as two-spirit, a translation of niizh manidoowag, the
Anishinaabe (Ojibwe) term for spiritual people who walk in two worlds, one foot in female and one
foot in male. In fact, Nepantla has been compared to the action of walking, whereby one is constantly
in motion and where each step shifts the center of gravity so there is no solid grounding. Anzaldta
highlights this movement and potentiality,

Nepantla, where the out boundaries of the mind’s inner life meet the outer world of reality, is a
zone of possibility. You experience reality as fluid, expanding and contracting. In Nepantla, you
are exposed, open to other perspectives, more readily able to access knowledge derived from
inner feelings, imaginal states, and outer events, and to “see through” them with a mindful,
holistic awareness. (Anzaldua and Keating 2002, p. 544).

For Anzaldua, being able to see through human acts of identity, knowledge, and construction
allows us to question when/if the actions of some violate the actions of others, thereby attending to
issues of dehumanization.

It is not simply the “space” of Nepantla that is powerful, but the power of being a Nepantlerx
one who chooses to live in a place of tensions—as a border crosser, so as to birth new knowledge.

viii
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For Nepantleras™, “to bridge is an act of will, an act of love, an attempt toward compassion and
reconciliation, and a promise to be present with the pain of others without losing themselves to
it.” (Anzaldua and Keating 2002; p. 4)

Bridging between two different views requires deep intellectual and emotional work. It means
being willing to hold two or more contradictory views in one’s mind at the same time with the goal
of not quickly coming to a conclusion that subsumes both ideas under an umbrella but maintains
some of those views and reaches a third space that is neither and both of those views. The idea of
Nepantla is consistent with Aboriginal knowledge of the metaphoric mind where we have the ability
to hold two completely different thoughts simultaneously (Cajete 2000).

Nahua metaphysics recognizes the shared collective consciousness of the cosmos. As such, a
person is both in Nepantla and is Nepantla. That is, I am situated within a space of tensions and
multiple realities that is called Nepantla. And, by virtue of being in that space, I am also the thing
called Nepantla; I contribute to its essence. Therefore, Nepantla dictates how we move through the
world. We are conscious of the multiple realities and energy in which we participate and to which we
contribute as well.

Elsewhere, I have argued that Nepantla can help mathematics education researchers think
differently about knowledge (Gutiérrez 2012) and provide a guiding principle for teacher education
(Gutiérrez 2015). Here, I am suggesting that Nepantla can help us interrogate the idea that
mathematics is both a universal endeavor and not a universal endeavor. That is, the practice of
mathematics is not universal in the sense that it is always localized and particular to the needs of
those who practice it (e.g., D’Ambrosio 2006; Ascher 2002; Gerdes 1997; Powell and Frankenstein
1997; Knijnik 2007; Restivo 2007). Yet, many of the forms that are practiced throughout the world
have been identified as falling within six general forms: counting, locating, measuring, designing,
playing, and explaining (Bishop 1988).

For Hatcher et al. (2009), this is two-eyed seeing, learning to see with one eye through
Indigenous ways of knowing and the other eye on Western ways of knowing.

The principles of Two-Eyed Seeing are used for the purposes of collateral learning or colearning
where Western Scientific concepts are constructed side by side with minimal interference and
interaction with Indigenous Scientific concepts (p. 149).

Unlike Hatcher’s goals, I choose to privilege the view of a Nepantlerx—seeing the
interconnectedness between Indignenous and Whitestream knowledge of mathematics. I choose the
term Whitestream instead of European American to highlight the role of global White supremacy in
the enterprise of mathematics education. Like Hatcher et al., Ogawa (1995) advocates for a kind of
multi-science teaching, seeing from multiple views. Aikenhead (2017) echoes this focus on seeing
more than one reality, saying,

Indigenous cultures, for instance, generally share presuppositions characterized as value-laden,
contextualized, cultural, ideological, mostly subjective, and embracing multiple truths. (p. 29)

In embracing these multiple truths, he suggests that students need to learn to be “cultural border
crossers” (Aikenhead 1997), reminiscent of Anzaldia’s Nepantleras.

I choose to talk about knowledge from the point of view of a Nepantlerx because it highlights
metaphysics and the choice for persons to stay in tensions rather than choosing one view over the
other. A critical theorist might suggest an omnipotent perspective from above, a single version of
mathematics that would be necessarily less oppressive and best at addressing ethics. In contrast, a
post-structural view might suggest a relativist position where there is no one truth and all possibilities
are viable for addressing ethics. For me, neither of these options is productive, as each requires a
form of collapsing under one umbrella. From the view of a Nepantlerx, one is always trying to find
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ways of staying in the tensions long enough to birth new knowledge. The value of Nepantla is
reminding us to seek multiple realities and to hold those in view because they help us generate new
knowledge.

Embracing Nepantla would mean allowing these differing views to remain separate but in
relation. Anzaldua refers to this state of interdependence and solidarity as nos/otras,” meaning
us/them intertwined. [See Gutiérrez (2012) for an explanation of nos/otr@s as it relates to
mathematics education.] Like Nepantla, mathematics is always in motion and embodying principles
that could be considered contradictory. Mathematically, the relationship between abstraction and
contextualization is an example, as the definition of each relies upon the other.

Mathematx
Combining the views of In Lak’ech, reciprocity, and Nepantla allows us to raise new questions
about a vision of practicing mathematics that might move past previous notions of Western versus
other mathematics, past an idea of mathematics as either oppressing or liberating, beyond a
mathematics that is either discovered or invented, towards an idea that allows us to deal with today’s
complexity and uncertainties. Towards that end, I am calling for a radical reimagination of
mathematics, a version that embraces the body, emotions, and harmony.

Seeking/Performing Patterns for Problem Solving and Joy

Mathematx is a way of seeking, acknowledging, and creating patterns for the purpose of solving
problems (e.g., survival) and experiencing joy. Beginning with the principles of recognizing self
and/in others, responsibility towards others, and valuing tensions, several things stand out as different
from the typical way Western mathematics is conducted or experienced by students in school. First,
although some mathematicians experience pleasure as a result of solving previously unsolved
problems, that aspect of joy is often a very small percentage of the time and almost always absent
from the “mathematical product” (e.g., new theorem, new proof) that is valued by the community.
Yet, mathematics education researchers who study aesthetics highlight this domain as essential to
human meaning making and to the insights that mathematicians develop (Sinclair 2009).

Aesthetics join emotion, pleasure, and understanding for humans as they relate to their world
(Dewey 1934). For mathematicians, aesthetics may serve as a precursor for intuition, whereby they
do not rely upon a sense of logic and deduction but upon some general sense of how things connect
together (Burton 1999), often illuminating a unity of meanings and values. In this sense, intuition and
wonder may lead to joy and discovery (Sinclair and Watson 2001). That is, we seek what is
surprising and wonderful, yet events must fit into a broader scheme; the parts must fit with the whole
(Gadanidis and Borba 2008). In fact, because humans have had to discern patterns in their world in
order to survive, we may be predisposed to attend to just “enough complexity to engage the mind
but...not overwhelm it with incomprehensible irregularity or diversity” (Sinclair 2009, p. 52).
Although much of this intuitive/aesthetic work remains at the subconscious level for many
mathematicians, mathematx is intricately tied to what is pleasing and rewarding in a connected way,
not just a utilitarian or “problem solving” manner. This perspective is consistent with Boylan’s
(2016) call for putting passion and pleasure at the heart of mathematics education. For me, “pleasing”
includes not just the playful way in which many “pure™” mathematicians invent new workspaces by
beginning with different axioms, (e.g., 8-dimensional space) but also how other persons perform
mathematx for/with us. This version of play deviates from Bishop’s definition surrounding games
because play does not necessarily involve an organized game, but includes a kind of frivolous
activity with value perhaps only for the one performing it.

Like plants, humans also have a way of expressing ourselves (our tastes, our values) and our
sense of beauty through patterns (e.g., braiding hair, creating symmetry in our surroundings, walking,
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dancing, speaking, dressing, creating balance in a home). These patterns are both playful (useless)
and purposeful (useful) at the same time because they have the potential to connect us with others.
Reviewing the work of Dissanayake, Sinclair (2009) highlights that this form of expressing ourselves
through aesthetics helps indicate that we are special. In terms of patterns, it might not be just
regularity that matters for persons. Biologists have noted that the ability to embody opposites
(Nepantla) is consistent with living systems that show simultaneous stability and plasticity,
incomplete separation between internal and external topology, prolonged stages of criticality, and the
co-existence of future and past (Soto et al. 2016; Longo and Montévil 2011; Montévil et al. 2016).
Again, broadening our definitions of living beings may yield insights for mathematicians who seek to
discern, appreciate, and reciprocate patterns.

Current versions of what count as “beautiful” in mathematics tend not to reflect the diversity in
our world. Instead, they tend to relate to truth (Stewart 2007), implying universals rather than
uniqueness/expression that would align with performance or a plurality of epistemologies. If we can
recognize that cultural theses of modes of living are aesthetic choices (Popkewitz 2002; 2008) and
some aesthetics are not superior to others, then the means for controlling or dominating is lessened.
The opportunity to appreciate another’s values is the embodiment of In Lak’ech. In other words,
approaching life in this way of appreciating and looking for similarity is what helps us grow and also
recognize difference. Ethics and aesthetics join in mathematics when we have guiding principles like
In Lak’ech, reciprocity, and Nepantla.

Intervention in Reality

Second, whereas mathematics tends to be thought of as a noun (e.g., a body of knowledge, a
science of patterns, a universal language), mathematx is performance and, therefore, a verb. Just as
identity is not something that you are, but rather something you do (Butler 1999), mathematx
emphasizes the guiding principles and the process as opposed to the product. Drawing upon the
concept of reciprocity, mathematx is an intervention-in-reality (action) as opposed to a
representation-in-reality (explanation) (Santos 2007). The starting point for Western mathematicians
would be to begin with embracing the joy/emotions and seeking In Lak’ech, reciprocity, and looking
for opportunities to be a Nepantlerx while doing mathematics. Let us consider an example. A
common theme in combinatorics is to start with an object P, and define some sort of counting
function to P, which makes sense for taking in positive values because it results in a polynomial.
Then, negative values are substituted into the counting function and it is recognized as a new
counting function for a different/new mathematical object. For mathematicians, this work is known
as combinatorial reciprocity (Meléndez 2017). In fact, Beck and Sanyal (2017) ascribe animacy to
the process by referring to it as moving from “your world” to “my world.” The new counting
function has offered something that the original counting function could not. Is the mathematician
grateful for the offering of this new counting function? Is there some joy in noting that functions can
give back to each other? How might that starting point extend to other forms of reciprocity in doing
mathematics with other persons?

The idea of mathematx as verb is consistent with many Aboriginal languages that are largely
verb-based and may relate to how persons practice mathematics (Lunney Borden 2011). Mathematx
is an activity that cannot be extracted from the living being(s) in the process of solving problems
and/or experiencing joy--the mathematxn. Although ethnomathematics tends to take into
consideration the idea that different cultures do different mathematics, the unit of analysis normally
remains at the level of the group and what they have produced, possibly promoting the unintended
message that all members of that culture do the same things for the same purposes. Mathematx
acknowledges this group relation, but recognizes the meaning that each person ascribes to what is
being experienced.
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The x at the end of the word signifies movement, an openness, the x being a variable that could
be represented by anything. In this sense, mathematx is constantly evolving, depending upon what is
represented with that x. This framing is consistent with the choice to use “x” as an ending (e.g.,
Latinx) to represent any gender performance instead of privileging a patriarchal view or ascribing to
a binary of male/female.

I choose mathematx instead of mathematix in order to distinguish between the two when spoken
aloud. In Nahuatl, the “x” is pronounced “sh.” So, the word is pronounced mathematesh. The x is
also political in the sense of Malcolm X, the human rights activist who took on the x to represent all
of the unnamed ancestors and their cultures that had been lost through slavery. For me, mathematx is
a political statement about reclaiming the persons who have been lost when humans remain at the
center. As such, mathematx seeks to intervene in the status quo of mathematics.

Living Mathematics

The title of this article suggests a vision of living mathematx. What might it mean to live
mathematx? Living mathematx means both that we live a version of mathematx as well as we are a
living version of mathematx. This framing is consistent with Nahua metaphysics that suggests one is
both in Nepantla and one is Nepantla. Living mathematx means moving through the world with other
living beings, acknowledging, appreciating, and reciprocating the patterns produced. If we look to
animals and plants for some insight, we see that Brassica oleracea (Romanesco cauliflower) performs
itself in both utilitarian (compact) and non-utilitarian (pleasing) ways that may get us to pay attention
to its form and to continue to cultivate it. On the one hand, Romanesco cauliflower performs a
version of the “Fibonacci” sequence that maps onto Western mathematics, and the elegance of the
pattern brings joy while at the same time solves problems of space. Yet, like all persons, every
brassica oleracea, performs itself in a way, and over its lifetime, that shows variance and suggests a
departure from a pre-determined set of possible outcomes programmed by genomes (Montévil et al.
2016). We might ask ourselves, why is a grove of trees, each with similar but not perfect versions of
fractals more pleasing than a computer-generated version of a grove of trees that precisely follows
expanding symmetry? Is there something more in our relation that triggers a sense of pleasure,
appreciating the aesthetics that plants perform? Are we able to discern and appreciate asymmetry
along with symmetry? And, in what way(s) might this relate to aesthetics, intuition, or insight? Are
there patterns in the ways in which our pleasure is communicated back to plants, for example,
through pheromones or other means we are not yet able to understand or describe?

Do other persons remind us of the importance of beauty in imperfection, of not relying upon a
defined algorithm? That is, although they offer good approximations of such things as shorelines of
oceans, fractals in Western mathematics do not map perfectly onto the universe around us. Moreover,
not all symmetry is inherently beautiful or “natural.” Marcelo Gleiser refers to this phenomenon as
the aesthetics of the imperfect. He notes that while synthesizing amino acids in a laboratory setting,
biologists achieve approximately 50 percent right-handed chiral™ formations and 50 percent left-
handed formations. Yet, in living creatures, virtually all amino acids are left-handed. This asymmetry
is critical for protein folding and reproduction. The same is true for the asymmetry of occurrence in
matter and anti-matter in physics™". So, asymmetry, not just symmetry, may be a form of
performance by living beings to which we need to pay greater attention. Perhaps this asymmetry has
aspects of a pattern that are complex enough without being overwhelming to initiate surprise or
wonder.

Can our older brothers and sisters in this universe (and others) teach us something based on how
they have developed and organized themselves to relate with each other to please and solve
problems? From a practical point of view, are there ways in which we can organize our living spaces
to draw upon visions such as the Three Sisters and other geometric formations that our older brothers
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and sisters use? In some respects this idea of learning from our older brothers and sisters is not new.
Researchers have begun to rely upon biomimicry, copying the forms observed in “nature,” in order to
solve complex problems of space, design, and efficiency. For example, termites have taught
architects in Harare, Zimbabwe, how to erect buildings with patterns that create effective internal
climate control systems; Kingfisher birds have taught engineers how to construct high speed trains
that will move through the air with less noise; plants and insects are teaching aerospace engineers
about miori folds in order to tightly package and then deploy enormous complex origami versions of
sun shades to block the light and allow telescopes to take more accurate pictures; similar folds in the
universe are helping physicists understand neighboring galaxies. However, all of this biomimicry is
taking place in research labs, not in schools with students. We are missing an opportunity to expose
students to plants, animals, and other persons as our teachers, and perhaps also our opportunity to
reciprocate actions.

In terms of recognizing and performing patterns—living mathematx—marine creatures such as
salmon, sea turtles, trout, and eels have the ability to read magnetic fields in the earth and use them in
migration (Pennisi 2017). Animals such as bears, dear, elk, great apes, macaws, lizards, and fruit flies
are able to read (communicate with) plants in order to self-medicate when they have diseases
(Shurkin 2014) or develop high levels of toxins in their skin and use other chemical signals to
communicate and ward off predators (Hagelin and Jones 2007). Several tree species such as oak,
spruce, and beech are known to communicate among themselves and with each other in order to ward
off disease, share resources, and protect each other (Wohlleben, 2016). Like Las Tres Hermanas
(corn, beans, squash) mentioned earlier, many of our cousins seem to recognize/acknowledge
patterns and create new ones while collaborating and valuing reciprocity. To date, many researchers
rely upon Bishop’s (1988) classification of six forms of mathematics: counting, locating, measuring,
designing, playing, and explaining. I urge us to consider what forms of classification might we
develop in looking to other-than-human persons and the ways in which they live mathematx in their
local contexts? Which new forms of mathematics might arise?

From a philosophical perspective, perhaps it is neither that we have come to appreciate the
“natural” patterns present in plants, animals, and rocks, as Platonists would have us believe (i.e., that
they have taught us patterns that were programmed within them or that they developed), nor that we
simply project our own aesthetics onto our living cousins (i.e., that we see the mathematics we want
to see in our environment) as Realists would have us believe. More likely, our relations and the
tensions between us provide the multiple lenses on reality and instability. We are constantly in
motion like a Nepantlerx. This is consistent, though different, from Barad’s (2001) notion of “intra-
action.” If, instead of perpetuating a human/non-human binary, we consider the shared consciousness
between all living beings, the greater unity to which we belong, we are more likely to value
mathematx for what it offers us. We can acknowledge both the potential for domination between
living beings while also opening up the possibility of harmony and reciprocity in the practice of
mathematics.

As we look for new structures and forms of mathematics to help solve the global crises we
encounter as well as to experience joy, we might consider how other living beings might offer
lessons and insights. We have developed new structures and physics concepts by studying intently
such things as symmetry and conservation laws in the physical world. Even using a narrow definition
of living beings, biologists have noted that all organisms (uni-cellular or multicellular) do not simply
follow prescribed rules or programming. They develop their own norms/rules in a way that balance
between plasticity and robustness; that is, they show spontaneous organization and variance that does
not appear in physics (Soto et al. 2016). If we broaden our understanding of living beings beyond the
organism, we might find even further insights.
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Reflecting an Ecology of Knowledges

Building upon Andreotti, Ahenakew, and Cooper’s epistemic plurality (2011) and Santos’ (2007)
call for a new ecology of knowledges, I suggest that mathematx guide our work in mathematics.
Because mathematx acknowledges that all persons will seek, acknowledge, and create patterns
differently in order to solve problems and experience joy, multiple knowledges are valued and
sought. These multiple knowledges are important, given that all knowledge is partial and each offers
us a different angle and understanding on the world. The goal is not to work towards a summative
understanding, as if by simply adding the different knowledges we will have a complete or perfect
view. Rather, our work is to locate ourselves in others and others in us, as we attempt to understand
our world through patterns. Doing mathematics in this way offers us the opportunity to unlearn our
epistemological arrogance. The concept of reciprocity draws upon complementarity in recognizing
that different knowledges contribute something others do not. Mathematx nurtures a view of
mathematics that always considers strengths and limitations for particular purposes. For example, we
might ask ourselves: which forms of mathematics can our brothers/sisters perform for which we do
not have a way to express? In looking to other persons, might we be more open to multiple versions
of knowing that are constantly open to new axioms and even non-axiomatic mathematics?

While others have noted that Western mathematics—sometimes referred to as Platonist
mathematics or European mathematics or European American mathematics—is in opposition to
Indigenous mathematics, [ am not seeing that mathematx would be in opposition; rather it would
include Aboriginal mathematizing. In the same way that Latinx rejects the gender binary, mathematx
rejects the epistemological binary. Mathematx allows for a variety of expressions without suggesting
one is “normal,” superior, or the reference point for erasing other epistemologies. However,
mathematx is not everything and anything. It privileges a particular way of moving through the world
that acknowledges and produces patterns that align with the collective consciousness and energy of
the cosmos and respects other persons. Mathematx is less a way to describe how we currently do
mathematics and more a goal for how to approach our relations with each other in the practice of
mathematics. In this sense, mathematx is a quest for intersubjectivity and systems thinking, not unity.

Moreover, mathematx acknowledges Nepantla by underscoring the fact that there is no absolute
universalism or absolute relativism. That is, there is no umbrella term under which all forms of
mathematics can collapse and explain everything in reality. When we move from a global universal
mathematics to a form of mathematx, whereby we acknowledge epistemological pluralism and are
guided by first principles of In Lak’ech, reciprocity, and Nepantla, we are likely to see changes in not
only mathematical activity (and products) but also in mathematxns.

Philosophers, sociologists, and anthropologists who study mathematics have long argued that
“school mathematics” is but one small version of the many forms of mathematics practiced in the
world and that such mathematics does not operate outside of individuals, morals, or politics (Brown
1994; Clarke 2001; Ernest 1994, 2000; Fitzsimons 2002; Restivo 1994; 2007; Turnbull 2000; Verran
2001). Often, in making these claims, researchers point to the field of ethnomathematics to highlight
the fact that all cultures do mathematics in localized ways. In some respects, | am arguing for an
extension of ethnomathematics to include animals, plants, rocks, bodies of water, and other persons.
Mathematx is consistent with a focus on peace, education as relation, a recognition of the imprint of
Western thought in dominant mathematics, and a language through which people could be more
creative (D’ Ambrosio 2007; Francois and Van Kerkhove 2010; Gerdes 1988; Powell and
Frankenstein 1997). Even so, I choose mathematx as opposed to “ethnomathematics with the
inclusion of other-than-human persons” because I aim to avoid some of the pitfalls of previous
understandings and implementations of ethnomathematics (Cimen 2014; doCarmite and Pais 2009;
Vithal and Skovsmose 1997). For example, I am not looking to use Western mathematics or a
Platonist view as the standard by which we judge other persons to live mathematx or to suggest a
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kind of essentialization of humans (Gutiérrez 2000; Francois and Van Kerkhove 2010). Moreover, |
do not wish for the knowledge of our older brothers and sisters to simply be
acknowledged/sanctioned and shared (Mesquita and Restivo 2013); I want such knowledge to be
valued and applied. Although D’ Ambrosio broadened his definition of “ethno” to include “all
culturally identifiable groups with their jargons, codes, symbols, myths, and even specific ways of
reasoning and inferring” (p. 17, cited in Francois and Van Kerkhove), people have continued to think
about ethnomathematics as practiced by ancient ethnic (non-Western or non-White) cultures™" or
collapsed it into a form of cultural appropriation. By introducing mathematx, I also seek to decenter
the notion of “tics” (technologies), which, for me, do not capture the body/spirit (feminine) and the
ways we move through the world in the same metaphysical manner (Haraway 1988; Harding 2008).
Mathematx is more than explaining and understanding in order to survive (D’ Ambrosio 1990); it
attends to aesthetics and the body.

Implications for Teaching and Learning

Elsewhere, I have argued that the practice of school mathematics in the US regulates the child by
privileging: algebra/calculus over geometry/topology/spatial reasoning; rule following over rule
breaking; Western mathematics (culture free) over ethnomathematics (recognizing that even
academic mathematicians are a culture); the “standard algorithm” over invented or international
algorithms; abstraction over context (“just pretend this is real world”); mind over body; logic over
intuition; and encouraging students to “critique the reasoning of others” over appreciating their
reasoning (Gutiérrez, in preparation). Not only can these repeated practices over a lifetime serve to
dehumanize students and teachers in classrooms, the narrative about mathematics being a pure
discipline, reflective of the natural world around us, universal, with an almost unilaterally positive
relationship to society’s advancement, leaves many humans unable to challenge this narrative to
consider other ways of doing mathematics. In this way, school mathematics comes to normalize and
valorize particular practices and to make others seem deviant and in need of fixing (Skovsmose 1994;
Walkerdine 1994). By continuing to privilege data analysis and probability over other kinds of spatial
patterning, even if that data analysis concerns itself with issues such as climate change, we run the
risk of limiting new ways of doing mathematics and our relationships to the practice.

In contrast, what might teaching and learning look life if mathematx were embraced? First,
students need time to relate with other-than-human persons in order to develop a familiarity with the
kinds of patterns that exist outside of themselves—things that are both another version of us and yet
not exactly us—so they can provide mirrors onto ourselves and windows onto another’s world.
Rather than education happening within school walls, students might be asked to head outdoors. In
lieu of a purely dominant mathematics curriculum (Gutiérrez 2002), students might be asked to
investigate: How do we acknowledge, understand, and relate to the patterns in bird song? What are
the patterns/signs/codes that allow some animals to relate to their plant relatives for the purpose of
self-medication? What are some of the patterns that occur as insects package their wings and bodies?
And, in what way(s) might those forms solve problems and bring joy? How do those packages of
wings and bodies relate to other packages in humans, in other species, in the imagination? Where
does the search for patterns fail to capture other meanings in these practices? These are all questions
for which most teachers will not have answers. Therefore, different from the portrayal of the math
teacher as the credentialed professional who has acquired the “knowledge base” and who is inserted
into the child’s life in a coercive relationship whose success is conditional upon pre-set performance
measures and criteria, living mathematx would involve the passing of knowledge only when the
knowledge receiver is ready and a relationship is formed between giver and receiver, as suggested
earlier by Hatcher et al. (2009).
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In some respects, seeking to understand how we and our older brothers and sisters live
mathematx can serve as both a problem solving exercise (in mental manipulation, spatial reasoning,
and other things that might map easily onto current forms of humans doing mathematics), but it is
also likely to deviate from the language we have to understand or describe. In this way, students will
be learning how to be open to other forms of being and for recognizing the tools necessary for
reading and responding (reciprocity) to those forms and also being fully present in the beauty of such
performances. Such an education would shift the dynamics from an objectifying description and
problem-solving manner towards one that includes joy, respect for the person, and the desire to act
(reciprocate) in a way that is responsive to the particular situation at hand, thereby changing the
individual learner in the process. In the same way that we might see traditional mathematics
classrooms move away from students being taught to “critique” the reasoning of other students, as is
called for in the Common Core State Standards in Mathematics (National Governors’ Association
2010) towards what I refer to as “appreciating” the reasoning of other students (i.e., being able to
stand in their shoes), we might see that process occur across all persons.

Some researchers have started to bridge the gap between aesthetics and mathematics through the
online game Fold It where players find pleasure in folding proteins in compact ways and earn game
points (Cooper et al. 2010). The players’ unique folds are analyzed by researchers who then apply
puzzle solutions to real world problems in the medical industry. In fact, this form of crowd sourcing
has developed insights and answers to problems concerning the AIDS epidemic that researchers and
computer-generated approaches alone had failed to solve. Researchers involved in the project are
studying the intuition of players and how they approach the folding process in order to improve
algorithms generated by computers. This form of pleasure and “learning” occurs outside of the
school walls. However, combining versions of exploring the world to relate with other persons and
then playing such games may help us identify certain trends that would have been difficult using our
eyes alone. That is, there may be ways in which relating with plants, animals, rocks, or other persons
inspire us to develop intuition in approaching the visual display of computer-generated objects that
can be both pleasing for us as well as build upon the mathematx that other persons live in order to
generate biomedical solutions to health problems.

Learning through mathematx accedes that all knowledge is based on particular worldviews and
ways of knowing that close down other possible choices; that is, knowledge is a political process, not
a neutral product. Rather than mathematics being seen as the pursuit of truth in the sense of a
unifying theory of reality (e.g., the unique solution to string theory) and, therefore, the means to
control, learners embracing mathematx might come to see that the mathematics performed by
humans is but one form that describes part of our world, but not all. Through living mathematx,
teachers and students would practice walking alongside of other living beings, revising their
understandings based upon their relations with them. In this sense, students would have opportunities
to unlearn their epistemological arrogance. Teachers would focus upon helping create opportunities
for learners to engage in an aesthetic experience—seeking surprise both in how similar something is,
but also how it differs—to wonder about how other living beings seek, acknowledge, and perform
patterns for their own survival and joy. Teachers might also encourage students to search for patterns
that are felt/experienced (at the macro level), not just conceptually identified (at the micro level).
What are the aesthetic preferences that help us define and understand the concept of pattern?
Through mathematx, learners are likely to become more reflective about their learning and their
relations in the world—what they know, what they do not know, as opposed to what can be known.

Because mathematx involves the Nepantla state of both/neither when discussing problem solving
and joy, learners will need to become comfortable with such uncertainty. In other words, they will
come to know and practice mathematics as neither purely problem solving, nor as purely joy, but also
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not both in a cumulative sense. Learning mathematics in this way means being able to, at times,
acknowledge one side over the other, but always seeing the two in relation.

Teachers’ roles would necessarily shift from telling/showing and towards living alongside of
students and other persons. Teachers should be asking themselves, “Am I conducting mathematical
activity with an eye towards reciprocity, Nepantla, In Lak’ech? Am I doing mathematics to see
myself in others and others in myself, to give and to receive from my universe, to acknowledge
multiple ways of knowing and multiple kinds of knowers?” Students would be learning to move
through the world, appreciating, noting the forms, packages, and connections that plants, animals,
rocks and other persons develop. In a sense, we are apprenticing learners to become “mathematxns”
by providing guiding principles—In Lak’ech, Nepantla, and reciprocity. We are preparing them to
look for what we already acknowledge/sanction as some humans doing mathematics with how other
persons (human and other-than-human) live mathematx. In doing so, we must recognize that
ignorance might not just be a lack of knowledge but an active refusal to know because it disrupts
one’s previous beliefs. If we start early with young learners, it may be easier to disrupt what humans
have come to consider normal in the practice of mathematics. That is, like learning a new language,
young students often are able to absorb new ideas and new ways of gaining knowledge.

Mathematx is not a rival body of formal knowledge to mathematics. Rather, mathematx is a
worldview that surrounds and guides whatever it is that we are trying to accomplish mathematically.
However, because of the performativity of mathematx, this new approach is likely to produce new
structures and forms that academic mathematicians might acknowledge as new mathematics.
Indigenous epistemologies value context and relationships, recognizing that our strength comes from
understanding ourselves not with universal principles but in relation to particular lands and particular
living beings. One could argue that the individual cannot be extracted from its environment and
understood in any meaningful way. Biologists would agree, suggesting that because biological
systems operate under different theoretical principles, a focus on living beings is likely to require
different forms of mathematical modeling (Montévil, 2017). For example, breaking something down
into its parts in order for study does not necessarily lead to anything meaningful about the results of a
model when inserted back into its context. We saw this was the case with synthesized amino acids
versus ones occurring in nature. So, our definition of a “useful mathematical model” may need to be
reexamined when we include all living beings as performers of mathematx, including ones that
would not be classified as organisms.

I am not suggesting that humans have gotten it all wrong and that by turning to other-than-human
persons, we will get it right. My goal is not to get closer to some absolute truth about our world.
Rather, learning with other persons opens the door for us to have different lenses for viewing and
relating with our universe and others. And, in doing so, we have the opportunity to learn how
different approaches (mathematics or mathematx) make im/possible certain forms of knowing the
world, recognizing that all of these forms are provisional, local, and legitimate. Even so, given the
history of particular knowledges, knowers, and ways of knowing that have dominated in our history
with respect to mathematics, it is important to give greater focus to the ways other-than-human
persons live mathematx.

I recognize the potential limitations of attempting to use a term like mathematx that is difficult to
both say and spell, even if one understands conceptually what it can offer. The term
ethnomathematics, even when being explicit that all cultural forms of mathematics are “ethno” has
not prevented many researchers and teachers from continuing to use Western mathematics in
opposition to, instead of as a version of ethnomathematics. That is, neither do we tend to refer to
Western mathematics as such nor do we refer to other mathematics as Eastern, Mexican, Northern, or
American. Ethnomathematics seems to encourage researchers and teachers to create a binary between
Western and Indigenous, rather than recognizing a variety of forms, some with overlapping goals and
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principles. Moreover, ethnomathematics also has not been well incorporated into the school
mathematics curriculum. So, some might wonder, what is to prevent the same phenomena with
mathematx?

To avoid these potential pitfalls, I have suggested we expand our view to all living beings,
thereby providing us with the ability to consider how some humans live mathematx differently from
each other as well as from other persons, creating new lines of solidarity (In Lak’ech) or difference
(and the need for reciprocity), or contradiction/tension (Nepantla). By expanding to other living
beings, mathematx can avoid the trap of Western versus “other” mathematics and open the door for
new categories to be drawn. For example, in what ways do humans live mathematx that are
consistent or compatible with how trees live mathematx? And, how are individual humans affected
by considering trees to be simultaneously another version of us (In Lak’ech) and not a version of us
(Nepantla), but in need of our reciprocity? In what ways are we incompatible? What are the new
knowledges and sensibilities we need to fully develop to live in harmony? Moreover, because
mathematx is not a description of the world, but rather a set of first principles in doing mathematics,
it differs from ethnomathematics in that it sets out a form of intervention.

Although the vision of living mathematx that I have outlined may sound outlandish, we need
only remember Clarke’s (1973) third law: “Any sufficiently advanced technology is indistinguishable
from magic.” In fact, I argue that mathematics as a field and as a human endeavor need only look to
other sciences to see it is late to evolve. The field of physics used to promote the idea that there was a
single time-space continuum. Then, Brian Greene (2011) introduced the concept of infinite parallel
universes and physicists are now imagining how humans could participate in more than one space at
one time. Moreover, the cosmologist Alexander Vilenkin has proposed a theory of our universe
sitting within a bubble of other universes (Vilenkin and Tegmark 2016), the implication being that
other universes may have different laws of physics. In a similar vein, I am suggesting that we may
have different forms of mathematx in which we participate, but to which we are largely blind and
numb. When we move 'through the world seeking connections and reciprocity, our views of
ourselves and of others change. I ask us to open our minds to envision how such a view could change
the relationship between humans, mathematics, and this universe with/in which we currently live.

Endnotes

"I am grateful to Federico Ardila-Mantilla, Kimberly Seashore, Andrés Vindas Meléndez, and
Diana Zambrano at San Francisco State University; and Brandon Singleton at the University of
Georgia for providing helpful comments on an earlier version of this article.

1 cite this article as 2010/2013 because it was published online through JRME in 2010 and some
researchers began citing it as such then. It was not released in print until 2013, and some researchers
have cited it as such since. Because the focus of the article is on a particular point in history, the
work should reflect the earlier date.

i My maternal grandmother was a woman of Raramuri (Tarahumara) descent. My ancestors are
located in the Copper Canyon region of Northwestern México.

v Two-spirit is an Aboriginal term.

VI use Indigenous and Aboriginal interchangeably. US authors tend to use the term Indigenous,
whereas authors from Canada, Australia, and New Zealand tend to use the term Aboriginal. In
Canada, Aboriginal includes First Nations, Métis, and Inuit peoples.

Vi place Fibonacci in quotes to highlight the presence of settler colonialism. That is, although the
Italian Leonardo Pisano (Fibonacci) receives credit for the pattern, many cultures and persons
throughout the world, including Pingala in 200BC in India, had already known/performed the same
pattern many years earlier. In fact, if humans are no longer the center, we might credit nautilus
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pompilius (Nautilus shell), pinus coulteri (pinecone), or helianthus annus (sunflower) with the
“discovery.”

¥il Conocimientos translates to “knowledges” in English.

Vil Similar to the use of Chicanx, Nepantlerx indicates solidarity with people who identify as
LGBTQIAZ2S. In the Spanish language, the —ero/-era ending of a word typically signifies “one
who...” As such, a Nepantlerx is one who chooses to reside in Nepantla.

X Anzaldta’s terms do not reflect the “x” because she was writing before such language was
common. She used a version that privileges a feminist perspective and therefore ends in “a” instead
of “0.”

* Anzaldua’s terms do not reflect the “x” because she was writing before such language was
common. She used a version that privileges a feminist perspective and therefore ends in “a.”

* T place pure in quotations to suggest that there is no such purity to mathematics. When we use
terms like pure mathematics or fundamental mathematics, we are “othering” different forms of
mathematics in ways that make them sound primitive or deviant. An Aboriginal stance would call
into question whether any form of mathematics could be seen as pure, as it will always have a
purpose and a grounding —cultural context—to start.

il Chirality refers to the geometric structure of a molecule, in particular how four different
entities connect to a carbon center. Like hands, chiral molecules cannot be superposed onto their
mirror image.

*ii See, for example, Paul Dirac’s prediction of anti-matter that contradicted classical quantum
physics where systems were thought to only have positive energy.

¥ Noted exceptions include the work of Gelsa Knijnik (2011), who has chronicled the Peoples
Land Movement in Brazil.
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PSYCHOLOGY IN MATHEMATICS EDUCATION: PAST, PRESENT, AND FUTURE

Leslie P. Steffe
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Starting with Woodworth and Thorndike’s classical experiment published in 1901, major periods in
mathematics education throughout 20th century and on into the current century are reviewed in
terms of competing epistemological and psychological paradigms that were operating within as well
as across the major periods. The periods were marked by attempts to make changes in school
mathematics by adherents of the dominant paradigm. Regardless of what paradigm was dominant,
the attempts essentially led to major disappointments or failures. What has been common across
these attempts is the practice of basing mathematics curricula for children on the first-order
mathematical knowledge of adults. I argue that rather than repeat such attempts to make wholesale
changes, what is needed is to construct mathematics curricula for children that is based on the
mathematics of children. Toward that end, I present several crucial radical constructivist research
programs.

Keywords: Learning Trajectories, Research Methods, Cognition, Curriculum

The accent must be on auto-regulation, on active assimilation — the accent must be on the activity
of the subject. Failing this there is no possible didactic or pedagogy which significantly
transforms the subject (Piaget, J., 1964).

Mathematics Education—1900-1950

Behaviorism and Faculty Psychology

The classical experiment. The classical experiment by Woodworth & Thorndike (1901) at the
beginning of the 20th Century introduced the “scientific movement” in education and it was
considered as the death knell of faculty psychology, the doctrine of “mental discipline” (e.g.,
Whipple, 1930; Thorndike, 1922). In faculty psychology, the mind was viewed as a collection of
separate modules or faculties assigned to various mental tasks, such as reason, will, concentration,
memory, or language and it was thought that training in one faculty would transfer to another. As a
result of their experiment, Woodworth & Thorndike (1901) concluded that, “The improvement in any
single mental function rarely brings about equal improvement in any other function, no matter how
similar, for the working of every mental function-group is conditioned by the nature of the data in
each particular case” (p. 250). The lack of transfer led Thorndike (1903) to develop his theory of
identical elements: “The answer which I shall try to defend is that a change in one function alters any
other only in so far as the two functions have as factors identical elements” (pp. 80-81). Once this
idea was accepted, “arithmetic was on its way to being analyzed into elements so that the stimulus-
response theories of Thorndike could be more readily applied” (Van Engen & Gibb, 1956, p. 1).

Cartesian epistemology. There was also a separation or duality between the mind and the body
in faculty psychology in that it was thought that mental discipline of the intellect would lead to
control of the will and emotions, a duality that has become known as “Descartes error”” (Damasio,
1994, pp. 248)—*I think, therefore I am.” It is interesting to me that this philosophical rationalism of
faculty psychology was regarded as falsified by means of a “crucial experiment” that was conducted
in the context of a competing paradigm, empiricism." Although I don’t wish to defend faculty
psychology, in retrospect I believe that a basic reason why faculty psychology was abandoned
transcended Woodworth and Thorndike’s classic experiment. In empiricism, the doctrine that the
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world imprints itself on the mind, there is a duality that is similar to the mind-body duality between
an endogenic (mind centered) view versus an exogenic (world centered) view (Konold & Johnson,
1991). This mind-reality duality in the main explains why faculty psychology was rejected and why
empiricism was so widely embraced. In behaviorism, no explanation of mind was needed nor was it
sought so there was already a major conflict in the two views of mind in faculty psychology and in
the behaviorism of Woodworth and Thorndike®. That is, there was already a paradigmatic rejection
of faculty psychology by the empiricists and the classical experiment corroborated the philosophical
rejection. Furthermore, in empiricism, something is true, “only if it corresponds to an independent,
‘objective’ reality” (von Glasersfeld, 1984. p. 20). So, the idea that the functioning of one faculty
would be transferred to the functioning in another faculty would have to be validated by such
functioning in objective reality, which is the crux of the classical experiment.

Behaviorism and Progressive Education

Progressive education. Although faculty psychology was abandoned as a psychological
rationale in education, there was a competing paradigm to the scientific movement during the period
of time that was known as Progressive Education. Under the leadership of John Dewey, the
Progressive Educational Association was formed in 1919 and it served as a counterpoint to the
scientific movement. Progressive Education promoted the idea of a child-centered education as well
as other aspects of education." As early as 1902 John Dewey wrote;

Abandon the notion of subject matter as something fixed and ready-made in itself, outside of the
child’s experience; cease thinking of the child’s experience as also something as hard and fast;
see it as something fluent, embryonic, vital; and we realize that the child and the curriculum are
simply two limits which define a single process. Just as two points define a straight line, so the
present standpoint of the child and the facts and truths of studies define instruction. (Dewey,
1902, p. 11)

This quotation might be interpreted as Dewey introducing a duality between the child and the subject
matter. Dewey’s (1902) distinction here is the subject matter as known by the scientist and the
subject matter as known by the teacher.

Every subject thus has two aspects: one for the scientist as a scientist; the other for the teacher as
a teacher. These two aspects are in no sense opposed or conflicting. But neither are they
immediately identical. (p. 22)

For Dewey (1902), subject matter for scientists represented a given body of truths, whereas for the
teacher,

He is concerned not with the subject matter as such, but with the subject matter as a related factor
in a total and growing experience. Thus to see it is to psychologize it. (p. 23)

Two concepts of number. Dewey’s emphasis on psychologizing subject matter was quite
different than that of the behaviorists. The difference is well illustrated in how Dewey and
Thorndike regarded number. For McLellan & Dewey (1895),

Number is not a property of the objects which can be realized through the mere use of the senses,
or impressed upon the mind by so-called external energies or attributes...In the simple
recognition, for example, of three things as three the following intellectual operations are
involved: The recognition of the three objects as forming one connected whole or group—that is,
there must be a recognition of the three things as individuals, and of the one, the unity, the whole,
made up of the three things. (p. 24)
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So, Dewey was not an empiricist. Recognition is an indication of assimilation, which, for Piaget
(1964), is the essential relation involved in learning. Recognizing the three things as individuals is
the result of using an operation of the mind, the unitizing operation (von Glasersfeld, 1981), and
recognizing the three things as the one, the unity, is the result of using the operation of uniting the
three things into a composite unity. Unitizing sensory material from two or more sensory channels
into experiential wholes stands in contrast to the assumption that the world imprints itself on the
mind, an assumption on which Thorndike’s psychology of number was based.

Thorndike (1922) identified three meanings of numbers—the series, collection, and ratio
meanings—and he credited McLellan and Dewey for the ratio meaning. However, he made no
attempt to engage in an analysis of the operations of the mind that produce these meanings. Of the
collection meaning, he wrote:

Or we may mean by knowledge of the meaning of numbers, knowledge that two fits a collection
of two units, that three fits a collection of three units, and so on, each number being a name for a
certain sized collection of discrete things, such as apples, pennies, boys, balls, fingers, and the
other customary objects of enumeration in the primary school. (pp. 2-3)

As an empiricist, number was taken as a given in reality and imprinted itself on the mind through the
senses. Rather than being concerned with the mathematical experience of the child, for Thorndike
(1922), “The psychology of the elementary school subjects is concerned with the connections
whereby a child is able to respond to the sight of printed words by thoughts of their meanings...” (p.
xi).

Thorndike’s influence. The influence that Thorndike had in mathematics education is illustrated
in the twenty-ninth yearbook of the National Society for the Study of Education.

Mainly, the main psychological basis is a behavioristic one, viewing skills and habits as fabrics
of connections. This is in contrast, on the one hand, to the older structural psychology [faculty
psychology]™ which has still to make direct contributions to classroom procedure, and on the
other hand, to the more recent Gestalt psychology, which, though promising, is not yet ready to
function as a basis of elementary education. (Knight, 1930, p. 5)

Knight’s attempt to separate the behaviorist approach to elementary education and that of the faculty
psychologists was spurious because it is difficult to distinguish faculty psychology’s educational
model (mental discipline) and Knight’s development of a behavioristic educational model. In faculty
psychology, it was thought that the best way to strengthen the minds of younger students was through
drill and repetition of what we might now call the basic skills in order to cultivate the memory",
which is quite similar to Knight’s interpretation of Thorndike’s (1922) Psychology of Arithmetic.
Thorndike thought that arithmetical knowledge should be treated as an organized interrelated system,
whereas his students, of which Knight was one, focused on the mechanics of arithmetic (Van Engen
& Gibb, p. 10). Knight also wrote of avoiding progressive education in the same introduction to the
yearbook.

Some readers may feel that the spirit of this Yearbook is too conservative, that it lacks a bold and
daring spirit of progressiveness. There has been a conscious attempt to avoid the urging of any
point of view not supported by considerable scientific fact. (Knight, 1930, p. 2)

A contentious relationship. The contentious relationship between progressive educators and
educators who held the opinion that the function of the school was to train the working class, be they
empiricist or faculty psychologists, appeared prior to the publication of the twenty-ninth yearbook.
In 1918 Harold Rugg and John Clarke critically analyzed attempts to reconstruct ninth-grade
mathematics and presented their own program in the last chapter of their study. “[T]he construction
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of a continuous mathematical course, worked out around two basic principles, one mathematical and
the other psychological” (p. 176) was a major component of their program. They did cite a classic
textbook series (Wentworth, Smith, & Brown, 1918) as an attempt to reconstruct ninth grade
mathematics, but such texts were regarded as coming up short. In a perusal of the cited text I found
that basic algebra was as formal, rule bound, and manipulative as one would expect in a text designed
to train students in algebra.

The contentious relationship continued on after Rugg and Clarke’s 1918 study, this time directed
toward Harold Rugg’s social study textbooks. Rugg eventually became one of a small group of
progressive educators at Teachers College, Columbia University where he published a social study
textbook in 1929 from a social-justice perspective titled, “Man and his changing society,” that
became widely used. Being a social studies textbook, it was appropriate that there was a focus on
social problems in the Unites States and the author encouraged students to explore potential
solutions. Rugg was eventually accused of socialism and conservative patriotic business groups who
did not want school children raising questions about the capitalistic economic system censured his
books.

By the end of the decade Rugg's books and several others were condemned by the American
Legion, the Advertising Federation of America, and the New York State Economic Council. In
1940, in a speech to the leaders of the oil industry, H.W. Prentis, the President of the National
Association of Manufacturers (NAM), complained that public schools had been invaded by
"creeping collectivism" through social science textbooks that undermined youths' beliefs in
private enterprise."!

Progressive education was repudiated and, during the decade of the 1950’s, it disintegrated as an
identifiable movement in education.” Although the movement may have disintegrated, that doesn’t
mean that the involved principles died with it.

Mathematics Education 1950-1970: The Era of Modern Mathematics

After World War II, wide spread concern for the state of the education of scientists and engineers
emerged when compared with that of the Russians. As a result, the mathematics community became
integrally involved in the reeducation of college teachers of mathematics (Price, 1988). The concern
soon shifted to the education of precollege mathematics (and science) teachers, especially after the
Soviet Union launched Sputnik I in October of 1957. Buttressed by the National Science
Foundation, a concerted effort was made by several mathematicians to upgrade the precollege
mathematics curriculum in order to educate college capable students (CEEB, 1959; Price, 1988).
Classical idealism (the doctrine that reality, or reality as we can know it, is fundamentally mental)
replaced empiricism as the dominant philosophical position among the reformers and mathematics
textbooks were written from the point of view of a mathematician’s mathematics (e.g., Allendoerfer
& Oakley, 1959; School Mathematics Study Group, 1965).

However, among the curriculum reformers the belief was, and it still is by most contemporary
mathematicians, that mathematics is discovered rather than invented by human beings (Stolzenberg,
1984). So, despite a major shift from empiricism to idealism, Cartesian epistemology was still the
prevailing epistemology of the curriculum developers and others primarily involved in the modern
mathematics movement, including researchers in mathematics education. Behaviorism was rejected
and problem solving along with learning by discovery became the major psychological emphases
(Polya, 1945, 1981) for which Wertheimer’s* (1945) work on productive thinking served as a basic
psychological rationale. Wertheimer considered productive thinking, or the solving of problems, as
based on insight and criticized reproductive thinking such as repetition, conditioning, and habits, all
of which are emphasized in behaviorism.
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Teaching Modern Mathematics

Interestingly enough, during the modern mathematics movement of the 1960’s, mathematics
teachers in the main did not change their traditional, behavioristic ways of teaching mathematics.
There were at least three reasons for this state of affairs. First, mathematics teachers were not
knowledgeable about what was purported to be the psychological emphases of the modern
mathematics programs. Institutes for mathematics teachers were held, but the institutes did not offer
courses on problem solving or learning by discovery. The primary emphasis in the institutes was on
upgrading the mathematical preparation of mathematics teachers.™ Second, the modern curricula
emphasized mathematical structure and the logical, deductive presentation of ideas rather than
problem solving and learning by discovery.™ There were minimal attempts to psychologize the
subject matter in these ways, which was a major oversight because of the influence textbooks have
on the classroom teaching of mathematics. Finally, behaviorism is a common sense psychology.
Although I would say that few mathematics teachers, including myself, had a working knowledge of
Thorndike’s psychology of arithmetic or algebra, or of behaviorism more generally, being held
accountable for four or five classes of 25-35 students per class can easily lead a teacher to using
common sense psychology in teaching without being reflectively aware of doing so. What I mean by
a common sense psychology is amply demonstrated in the following citation from an introduction to
Thorndike’s psychology of algebra.

Suffice it to say here that it emphasizes the dynamic aspect of the mind as a system of
connections between situations and responses; treats learning as the formation of such
connections or bonds or elementary habits; and finds that thought and reasoning—the so-called
higher powers—are not forces opposing those habits but are those habits organized to work
together and selectively. (Thorndike, Cobb, Orleans, Symonds, Wald, & Woodyard, 1926, p. v)

Piaget’s Genetic Structures as a Psychological Rationale

It is very interesting that Piaget’s genetic structures and stage theory of cognitive development
served as a psychological rationale for the modern mathematics programs at the elementary school
level (Bruner, 1960). This was primarily due to the logical-mathematical structural emphasis in the
modern mathematics programs that left the programs without a psychological rationale. Piaget’s
constructivism did not serve as an epistemological basis for the modern mathematics programs nor
was it even emphasized in a conference devoted to Piaget’s work and the modern programs that was
held at Cornell University in 1964 (cf. Ripple & Rockcastle, 1964). Instead, the interest was in
Piaget’s stage theory and his formalizations of the thinking of children within the stages as can be
seen by Bruner’s (1960) citation of Bérbel Inhelder, Piaget’s close collaborator, in The Process of
Education:

Basic notions in these fields are perfectly accessible to children of seven to ten years of age,
provided that they are divorced from their mathematical expressions and studied through material
the child can handle himself. (p. 43)

Inhelder’s idea was that children in the concrete operational stage™ were ready to learn, and indeed
could learn, “basic notions in these fields”. This idea served as the basis of Bruner’s (1960) famous
concept of the readiness to learn the basic structures of mathematics:

Any subject can be taught effectively in some intellectually honest form to any child at any stage
of development. (p. 33)

Bruner (1960), however, conflated basic structures of mathematics and Piaget’s genetic structures
when he referred to “less able students”:
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Good teaching that emphasizes the structure of the subject is probably even more valuable for the
less able students than for the gifted ones. (p. 9)

By “less able students,” I take Bruner as referencing children in Piaget’s preoperational stage,
children who’s thinking was not explained by Piaget’s Grouping structures. In this quotation, he
seemed caught in Cartesian anxiety.

[Cartesian anxiety] is an anxiety that permeates all metaphysical and epistemological questions
concerning the existence of a stable and reliable rock upon which we secure our thoughts and
actions. As Bernstein explains: “Either there is some support for our being, a fixed foundation
for our knowledge, or we cannot escape the forces of darkness that envelope us with madness,
with intellectual and moral chaos (p. 18).” (Konold & Johnson, 1991, p. 2)

In spite of using Piaget’s psychology as a rationale for the emphasis on mathematical structure,
Piaget was considered to be an observer rather than a teacher, and the elasticity of the limits of
children’s minds was not considered as having been established:

These reformers (and I speak now not only of SMSG) have been so successful in teaching
relatively complex ideas to young children, and thus doing considerable violence to some old
notions of readiness, that they have become highly optimistic about what mathematics can and
should be taught in the early grades. (Kilpatrick, 1964, p. 129)

I had no problem with Kilpatrick’s assertion for children who were in Piaget and Inhelder’s more
advanced concrete operational stage.™ But I did not accept Bruner’s famous hypothesis about the
readiness to learn for the “less able” children nor did I accept Kilpatrick’s assertion for children in
Piaget’s preoperational stage. Consequently, the way in which Piaget’s grouping structures might be
relevant in the mathematics education of children became a major problem for me soon after I earned
my Ph.D. from the University of Wisconsin in 1966. At that point, research in mathematics
education was still based in empiricism and to work scientifically meant to use experimental and
statistical methods (Stanley & Campbell, 1963) in the test of hypotheses in a way that was quite
similar to Thorndike and Woodworth’s classical experiment.

Applying Piaget’s Psychology

After joining the Department of Mathematics Education in 1967, I turned to working for a period
of approximately eight years in an attempt to reject Bruner’s famous hypothesis concerning the
readiness to learn mathematics for children who were in Piaget’s pre-operational stage. In this effort,
I functioned as an experimental researcher with little awareness that Piaget (1980) rejected
empiricism.

Fifty years of experience has taught us that knowledge does not result from a mere recording of
observations without a structuring activity on the part of the subject. (Piaget, 1980, p. 23)

My efforts were directed toward applying Piaget’s psychology in the mathematics education of
preoperational children in a “scientific” manner. Although I experimentally rejected Bruner’s
readiness hypothesis for these children (e.g., Steffe, 1966, 73), the children rather forcefully taught
me that I had no insights into the psychology of their mathematical thinking (Steffe, 2012). I
considered myself as doing pseudo-science and making only accretional progress if I was making
any progress at all. The relationships with the mathematics students that I taught as a mathematics
teacher was missing. That is, my contributions to the mathematical thinking and reasoning of the
children who were my “subjects” in the experiments was not being realized.

So, rather than rely on Piaget’s Grouping structures as a psychology of the child, I returned to my
identity as a mathematics teacher and taught two classes of first-grade children over the course of a
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school year so the children could teach me how they think when engaging in mathematical activity
(Steffe, Hirstein, & Spikes, 1976).*" The involved children taught me that counting was their
primary and spontaneous way of operating in discrete quantitative situations and that counting could
have quite different meanings for different children. Piaget had not explained children’s counting, so
this finding corroborated abandoning attempts to apply Piaget’s psychology in children’s
mathematical education. It also led to throwing off the straight jacket that controlled experimentation
and statistical methodology had on my conception of doing science in mathematics education. In
fact, it led to developing the teaching experiment as a method of doing research and using teaching as
a method of scientific investigation (Cobb & Steffe, 1983; Steffe, 1983; Steffe & Thompson, 2000b;
Steffe & Ulrich, 2013).

The shift to using teaching as a method of scientific investigation was a major shift in doing
research and, to my knowledge, at the time it was unprecedented in the United States. I learned later
that researchers in the Academy of Pedagogical Sciences in the USSR had already used versions of
teaching experiment in their work (Kilpatrick & Wirszup, 1975-1978). Not only did their work
provide academic respectability for what then was a major departure in the practice of research in
mathematics education in the United States, it was also a departure in the goals of the research. In
El’konin’s (1967) assessment of Vygotsky’s (1978) research, the essential function of a teaching
experiment is the production of models of student thinking and changes in it.

Unfortunately, it is still rare to meet with the interpretation of Vygotsky’s research as modeling,
rather than empirically studying, developmental processes. (El’konin 1967, p. 36)

So, the new problem that faced me was to construct explanations of the mental processes that are
involved in children’s counting and, further, to construct explanations of how children might
construct those mental processes. I had constructed a typology of the units children create in
counting that they taught me. However, I could not explain the processes that are involved in
children’s construction of these unit types other than Piaget’s account of children’s construction of
what he called arithmetical units (Piaget & Szeminska, 1952). That is, I realized that it was I who
had to construct a psychology of the mathematical children that I taught rather than attempt to apply
a psychology that had been constructed for a different purpose. That was a major breakthrough in
my conception of what it meant to do research in mathematics education.

Mathematics Education 1970-2000: The New Progressive Educators

Interdisciplinary Research on Number

The modern mathematics era ended circa 1970 and behaviorism came roaring back into
mathematics education. When von Glasersfeld and I started to work on the project, Interdisciplinary
Research on Number (IRON), he had just published his manifesto on radical constructivism (von
Glasersfeld, 1974) and it was his intention to start an epistemological revolution that would eliminate
the duality between mind and reality in Cartesian epistemology. It was also his intention [and mine]
to countermand the stranglehold that behaviorism once again had on mathematics education
throughout 1970’s and 1980°s. Radical constructivism emerged as an epistemology in mathematics
as well as in science education (e.g., Driver, 1995) throughout the 1980°s and played a role similar to
that of progressive education during the first one half of the century. But the role was essentially
based on von Glasersfeld’s (1989) first principle that, “knowledge is not passively received but
actively built up by the cognizing subject” (p. 182) rather than on the research that we were doing in
IRON. In fact, I frequently was told that joining radical constructivism was like joining a political
party. Few progressive educators appreciated the implications von Glasersfeld’s (1989) second
principle that, “the function of cognition is adaptive, and serves in the organization of the experiential
world, not the discovery of ontological reality” (p. 182), which was the “radical” part of radical
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constructivism that eliminated the Cartesian dualism between mind and reality (von Glasersfeld,
1974, 1984).

The Standards Movement and the “Math Wars”

Mathematics education was a conceptual wasteland during the 1970’s, so it was no surprise that
another crisis in education emerged that was marked by the publication of 4 Nation at Risk (National
Commission on Excellence in Education, 1983). Influenced by this newly perceived crisis, the
constructivist revolution, and the recommendation that problem solving be the focus of school
mathematics in the 1980’s (National Council of Teachers of Mathematics, 1980), the standards
movement in mathematics education officially began in 1989 with the publication of the Curriculum
and Evaluation Standards for School Mathematics (CESSM; National Council of Teachers of
Mathematics, 1989). The influence of Cartesian epistemology was still strong among the progressive
educators, so CESSM was a strange mixture of realism and constructivism in spite of the commission
claiming a constructivist view of learning, where learning was thought to, “occur through active as
well as passive involvement with mathematics” (CESSM, p. 9).

The National Science Foundation funded ten curriculum projects based on the CESSM that were
published circa 2000, curricula that unfortunately became known as “constructivist curricula.” The
publication of these curricula extended the famous “math wars” between conservative
mathematicians and progressive mathematics educators that erupted in California (cf. Klien,
http://www.csun.edu/~vemthOOm/). The “math wars” had their origin in the 1985 California
Mathematics Framework (California State Department of Education, 1985). This framework,

[W]as considered a progressive document—an antecedent of the 1989 NCTM Standards.
California’s professional teacher organization, the California Mathematics Council, was one of
the most progressive teacher organizations in the country, and one of the most enthusiastic
adopters of the spirit of the 1989 Standards. When the next adoption cycle came, the 1992
California Mathematics Framework (California State Department of Education, 1992) “pushed
the envelope” a good deal further: it emphasized reform, focusing on “mathematical power” and
collaborative and independent student work while de-emphasizing traditional skills and
algorithms. (Schoenfeld, 2007)

The attempts of the constructivist curricula writers to focus on student work were realized in part
through their social agenda, “Mathematics for All,” and concomitantly, how they regarded
mathematics learning and teaching. In this agenda, it was assumed that all students could learn the
mathematics specified in the content standards of CESSM.

If all students do not have an opportunity to learn this mathematics, we face the danger of
creating an intellectual elite and a polarized society. The image of a society in which a few have
the mathematical knowledge needed for the control of economic and scientific developments is
not consistent either with the values of a just democratic system or with its economic needs.
(CESSM, 1989, p. 9)

The social agenda of the writers of the so-called constructivist curricula was based on social
constructivism (Bauersfeld, 1995, 1996; Cobb & Yackel, 1996, Voight, 1989). The orientation that
shaped the social agenda and the recommendations for teaching is cogently caught in a comment
made by Bauersfeld (1995) that, “We can understand the development of mathematizing in the
classroom ‘as the interactive constitution of a social practice’” (p. 150). This sociological emphasis
is compatible with von Glasersfeld’s (1989) first principle of radical constructivism if “interactively”
is included in “actively.” It doesn’t, however, take into account von Glasersfeld’s (1989) second
principle. The reason is that, although interaction is a fundamental assumption in radical
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constructivism, there are two types of interaction: within subject and between subject interaction
(Steffe & Thompson, 2000a). The social constructivists emphasize between subject interaction and
make few attempts to model what might go on inside of the heads of children, which is where
learning and development take place.

The social agenda served to exacerbate the dissatisfaction the mathematical critics had with the
“constructivist” curricula.

[T]here is a unifying ideology behind “whole math.” It is advertised as math for all students, as
opposed to only white males. But the word all is a code for minority students and women (though
presumably not Asians). In 1996, while he was president of NCTM, Jack Price articulated this
view in direct terms on a radio show in San Diego: “What we have now is nostalgia math. It is
the mathematics that we have always had, that is good for the most part for the relatively-high
socioeconomic anglo male, and that we have a great deal of research that has been done showing
that women, for example, and minority groups do not learn the same way. They have the
capability, certainly, of learning, but they don’t. The teaching strategies that you use with them
are different from those that we have been able to use in the past when ... we weren’t expected to
graduate a lot of people, and most of those who did graduate and go on to college were the anglo
males.” (Klein, 2000)

Klein went on to say that; “I reject the notion that skin color or gender determines whether students
learn inductively as opposed to deductively and whether they should be taught the standard
operations of arithmetic and essential components of algebra” (Klein, 2000). So, not only did Klein
critique the standards in CESSM and the mathematics that was involved in the “constructivist”
curricula, he was also a critic of how teaching was conceptualized and practiced. Essentially, the
“math wars” were reminiscent of the contentious relationship between conservative patriotic business
groups and progressive educators concerning Rugg’s social science textbooks.

Mathematics Education 2000 and Forward: Outcome-Based Education
Klein’s rejection of the standards and the social agenda of the constructivist curricula writers
foreshadowed the mission of the Common Core State Standards for Mathematics (CCSSM)
(National Governors Association for Best Practices and Council of Chief State School Officers,
2010). The release of the CCSSM helped thaw the “math wars” (Lobato, 2014; Norton, 2014)
primarily, in my view, because of the presence of more rigorous curriculum standards. We find the
following statement in the introduction to CCSSM.

The standards are designed to be robust and relevant to the real world, reflecting the knowledge
and skills that our young people need for success in college and careers. With American students
fully prepared for the future, our communities will be best positioned to compete successfully in
the global economy. The Common Core State Standards provide a consistent, clear
understanding of what students are expected to learn, so teachers and parents know what they
need to do to help them (CCSSM, 2010, Introduction).

The CCSSM, similar to the CEEB in 1969, was designed primarily for college bound students.™
It has carried the emphasis on outcome-based education forward to the present time, whose
beginning was marked in mathematics education by the publication of the CESSM in 1989. It might
seem surprising that I would say that CESSM ushered in outcome-based education given that it also
was an impetus of the constructivist curricula that was so severely criticized in the “math wars”.
However, one of the main criticisms of the “constructivist” curricula and CESSM by the
mathematicians was that the involved standards were weak, not that there were not any standards.
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Outcome-based education is based on Cartesian epistemology with its requirement that
something is true only if it corresponds to an independent, objective reality, where the standards
constitute that objective reality. The neo-behaviorism of outcome-based education along with the
national emphasis on standards-based education by the No Child Left Behind Act of 2001 has had
the effect of standardizing precollege mathematics education. For example, students are required to
take standardized test throughout their years in school™ and these tests are used in evaluating
teachers, a practice that has become known as Value Added Measures [VAM’s] of teacher
performance. This surge of neo-behaviorism in mathematics education during the first years of the
21* century is exemplified in the report of the National Mathematics Advisory Panel (2008) with its
emphasis on rigorous scientific research. The research conducted in IRON concerning children’s
number sequences and fraction schemes and how they are used in the construction of adding,
subtracting, multiplying, and dividing schemes that has been published in books and various articles
(e.g., Steffe, von Glasersfeld, Richards, & Cobb, 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe &
Olive, 2010) was not even mentioned in that report. So, obviously, the authors of the report did not
consider that research as scientific research if they considered it at all.

Given the ubiquity of the influence of outcome-based education, one might think that there
should be another major effort by progressive educators to countermand that influence similar to the
era of the modern mathematics programs or to the era of the constructivist curricula. While that may
be of critical importance given the current state of mathematics education in precollege education,
essentially the attempted wholesale changes in mathematics education that were made following
national reports were abandoned after the changes led to major disappointments and failures. If this
history can be used to predict what might happen if another round of national reform in mathematics
education is attempted, a strong argument can be made that what is needed is to construct
mathematics curricula for children that is based on the mathematics of children rather than continue
on with the historical practice of basing mathematics curricula for children on the first-order
mathematical knowledge of adults. Simply put, if lasting progress in mathematics education is to be
made, researchers must establish the construction of mathematics curricula for children as an
academic field. I think of constructing mathematics curricula for children that is based on the
mathematics of children as a result of intensive and longish periods of teacher/researcher interactions
with children. Toward that end, I present several radical constructivist research programs that are
tailored toward constructing mathematics curricula for children that emerge from the work in IRON.
Before presenting the programs, I present several basic concepts that I feel will help understand the
research programs.

Radical Constructivist Research Programs

Basis Concepts

First- and second-order models. 1 understand children’s mathematics as a result of maturation
coupled with what children have constructed as a result of interacting in their social-cultural milieu in
all of its aspects. The assumption that children construct mathematical knowledge is an assumption
of an observer.**"" Children’s mathematics is thought of as first-order knowledge, which are, “the
hypothetical models that the observed subject constructs to order, comprehend, and control his or her
own experience (Steffe, et al., 1983, p. xvi). An observer psychologizes children’s mathematics by
constructing second-order models, which are, “the hypothetical models observers may construct of
the subject’s knowledge in order to explain their observations (i.e., their experience) of the subject’s
states and activities” (Steffe et. al. 1983, p. xvi). The second-order models are referred to as the
mathematics of children and the children’s first-order models are referred to as children’s
mathematics.™" The concept of children’s mathematics is based on the belief that mathematics is a
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product of the functioning of human intelligence (Piaget, 1980). The mathematics of children, which
is an explanation of children’s mathematics, is a legitimate mathematics to the extent that
teachers/researchers can find rational grounds to explain what children say and do.

Epistemological analysis and conceptual analysis. Conceptual analysis is the method by
which the second-order models that constitute the mathematics of children are produced. Conceptual
analysis is an analysis of mental operations. In explaining conceptual analysis, von Glasersfeld
(1995) drew from his experience with Silvio Ceccato’s Italian Operational School, whose goal was
to, “reduce all linguistic meaning, not to other words, but to ‘mental operations’” (p. 6). The main
goal of conceptual analysis is defined by a question from Ceccato’s group: “What mental operations
must be carried out to see the presented situation in the particular way one is seeing it?” (p. 78).
Thompson & Saldanha (2000) reformulated the goal in a way that is more relevant to constructing
second-order models of children’s language and actions. Their goal is to describe, “conceptual
operations that, were people to have them, might result in them thinking the way they evidently do”
(p. 315). Although I have extensively engaged in conceptual analysis in the construction of the
mathematics of children, I know of no papers that have been written that address the problem of how
one might creatively use the analytical tools that are available in radical constructivism in conceptual
analysis of children’s mathematical concepts and operations.

When conceptual analysis is used in the construction of second-order models, I refer to it as a
second-order conceptual analysis. Thompson & Saldanha (2000) included what I refer to as first-
order conceptual analysis in their discussion of epistemological analysis, that is, an analysis of one’s
own mathematical concepts and operations (cf. Thompson, 2008). According to Thompson &
Saldanha (2000), epistemological analysis, “is used to model what might be called systems of ideas,
like systems of ideas composing concepts of numeration systems, functions and rate of change, or
even larger systems like those expressed in quantitative reasoning” (p. 316). First-order conceptual
analysis is inextricably involved in second-order conceptual analysis of children’s mathematical
language and actions. Thompson & Saldanha (2000) also included a teacher/researcher analyzing
their own concepts and operations relative to children’s concepts and operations in interactive
mathematical communication. This kind of analysis involves the teacher/researcher operating as
Maturana’s (1978) second-order observer; that is, an “observer’s ability through second-order
consensuality to operate as external to the situation in which he or she is, and thus be observer of his
or hers circumstance as an observer (p. 61).

In the following quotation, if “intentionally isomorphic” is interpreted as imputing operations to a
mathematically operating child, what I said about making explanations is similar to Maturana’s
second part of the scientific method.

As scientists, we want to provide explanations for the phenomena we observe. That is, we want
to propose conceptual or concrete systems that can be deemed to be intentionally isomorphic to
(models of) the systems that generate the observed phenomena. In fact, an explanation is always
an intended reproduction or reformulation of a system or phenomenon. (Maturana, 1978. p. 30).

Maturana’s second part of the scientific method emphasized second-order conceptual analysis
and his first part emphasized first-order conceptual analysis, which was, “observation of a
phenomenon that, henceforth, is taken as a problem to be explained” (Maturana, 1978, p. 29). Of the
observer, he commented,

Yet we are seldom aware that an observation is the realization of a series of operations that entail
an observer as a system with properties that allow him or her to perform these operations, and,
hence, that the properties of the observer, by specifying the operations that he or she can perform
determine the observer’s domain of possible observations. (Maturana, 1978, p. 30)
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Like Maturana, I take the subject dependent nature of science in mathematics education as a starting
point. But I expand on it in two ways. First, the primary reason for engaging children as a
teacher/researcher is to allow children to teach one how and in what ways they operate
mathematically and, as commented by Thompson & Saldanha, to create operations that if a child had
those operations, the child would operate as observed. Second, as a teacher/researcher kind of
scientist, my contributions to children’s ways and means of operating mathematically by teaching
them is a constitutive part of a conceptual analysis of children’s mathematical language and actions.
In the words of Steier (1995);

Approaches to inquiry ... have centered on the idea of worlds being constructed ... by inquirers
who are simultaneously participants in those same worlds. (p. 70)

This understanding of the subject dependent nature of science in mathematics education provides
researchers with the power to create images of unrealized possibilities in the mathematics education
of children. But these possibilities are subject to the constraints of children as self-organizing
systems—the mind organizes the world by organizing itself (Piaget, 1935/71).

Learning and development. A central goal that runs throughout each research program is to
learn how to operationalize children’s mathematics learning and development as spontaneous
processes in mathematics teaching. A virtue of teaching that is focused on constructive itineraries of
children’s mathematics in which the teacher/researcher is a participant is that it allows the
teacher/researcher to become aware of children’s constructive processes, which are understood as the
construction of schemes and the accommodations that children make in them (cf. von Glasersfeld,
1980). Because of continual interaction with children, a teacher/researcher is likely to observe at
least the results of those critical moments when restructuring is indicated by changes in children’s
operations and anticipation (Tzur, 2014). Major restructuring of mathematical schemes is compatible
with a vital part of Vygotsky’s (1978) emphasis on studying the influence of learning on
development.

Unlike Vygotsky, however, I regard both learning and development in the context of
accommodations that children make in their schemes (Steffe, 1991b). But there is a difference in the
two kinds of accommodations. Learning is captured by the functional accommodations that occur in
a scheme in the context of the scheme being used, whereas development is captured by metamorphic
accommodations that occur independently in no particular application of a scheme. A
metamorphosis of a scheme is thought to be the result of autoregulation of the process of
interiorizing the scheme (cf. Simon, Saldanha, McClintock, Akar, Watanabe, & Zembat, 2010, for a
related view).

Learning and development are not spontaneous in the sense that the provocations that occasion
them might be intentional on the part of the teacher/researcher. In children’s frames of reference,
though, the processes involved are essentially outside of their awareness. This is indicated by the
observation that what children learn or develop often is not what was intended by the
teacher/researcher. It also is indicated when a child learns or develops when a teacher/researcher has
no such intention. Even in those cases where children learn what a teacher/researcher might intend,
the event that constitutes learning arises not because of the teacher’s actions. Rather, teaching
actions only occasion children’s learning (Kieren, 1994). Learning as well as development arises as
an independent contribution of the interacting children. So, although I do not use “spontaneous” in
the context of learning and development to indicate the absence of elements with which children
interact, I do use the term to refer to the non-causality of teaching actions, to the self-regulation of
the children when interacting, to a lack of awareness of the learning process, and to its
unpredictability. Because of these factors, I regard learning and development as spontaneous
processes in children’s frame of reference.
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Trajectories of the constructive activity of children. The construction of trajectories of
children’s learning and development is one of the most daunting but urgent problems facing
mathematics education today. It is also one of the most exciting problems because it is here that we
can construct an understanding of how teacher/researchers can profitably affect children’s
mathematics (Steffe, 2004). By building an understanding of children’s mathematical concepts and
operations and how a teacher/researcher can engage children to bring forth changes in those concepts
and operations, a vision of children’s mathematics education can emerge in which children engage in
productive mathematical learning and development and teacher/researchers engage in productive
mathematical teaching. The principle of self-reflexivity™ compels teacher/researchers to consider
their own knowledge of children’s mathematics, including accommodations in it, as constantly being
constructed as they interact with children as the children construct mathematical knowledge. Through
the construction of trajectories of children’s learning and development that are coproduced by
children and teacher/researchers, it is possible to construct trajectories that include an account of
teacher/researchers’ ways and means of acting and operating relative to children’s ways and means
of acting and operating (Ellis, 2014). Such an account entails the teacher/researcher operating as a
second-order observer.

A trajectory of children’s learning and development includes a model of the children’s initial
concepts and operations, an account of children’s constraints and necessary errors, an account of the
observable changes in children’s concepts and operations as a result of their interactive mathematical
activity in situations that are used by a teacher/researcher when interacting with children, an account
of the situations relative to a teacher/researcher’s models of the involved children’s mathematics and
the teacher/researcher’s goals and intentions, and an account of the involved mathematical
interactions. A similar historical account of what transpires in between observed changes is critical
not only to understand the changes, but also to provide estimates of the length and the nature of the
plateaus in children’s mathematical learning and/or development.

Trajectories of the constructive activity of children are third-order models that include the
second-order models that constitute the mathematics of children, the first-order models of the
teacher/researcher, and relationships between them. In the following research programs that I
present, I assume that the models that constitute the mathematics of children produced by IRON will
be used at least as starting places in the construction of the trajectories. Because of the nature of the
trajectories, I will refer to them as mathematics curricula for children throughout the rest of the paper
(Steffe, 2007). Concentrating on constructing mathematics curricula for children does not exclude
research programs that center on teacher/researchers working with classroom teachers of
children.™ In fact, each stated research program can be reformulated so that it is a research
program that involves teacher/researchers working with classroom teachers of children.

The First Research Program

The first research program is to construct mathematics curricula for children who enter their
first grade as counters of perceptual unit items over the course of their first eight years in
school.™

The second-order models that were constructed in IRON concerning children’s number
sequences and how the number sequences are used in the construction of adding, subtracting,
multiplying, and dividing schemes have been published in books and various articles (e.g., Steffe, et.
al., 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & Olive, 2010). Ulrich (2015-16) has published
two very readable papers that provide an introduction to the units, schemes, and operations that were
constructed in IRON as well as to some of the work that has extended the basic work (e.g.,
Hackenberg, 2013; Hackenberg & Lee, 2015; Hackenberg & Tillema, 2009; Hunt, Tzur, &
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Westenskow, 2016; Norton & Wilkins, 2013; Tillema, 2013; Ulrich, 2012). To start, I provide a
brief summary of the first two stages in the construction of children’s number sequences.

The first stage is a sensory-motor or pre-numerical stage that comprises pre-counters, counters of
perceptual unit items (CPUI), and counters of figurative unit items (CFUI). Counters of perceptual
unit items are restricted to counting items that are in their perceptual field, such as the toys in their
toy box, their steps, their heartbeats, or the chimes of a Grandfather clock. For example, an
interviewer covered six of nine marbles with his hand and asked Brenda, a six-year-old child, to
count all the marbles. Brenda first counted the interviewer's five fingers and then counted the three
visible marbles. The interviewer pointed out that he had six marbles beneath his hand and Brenda
replied, “I don't see no six!” (Steffe, & Cobb, 1988, p. 23)

Counters of figurative unit items might attempt to count the items in a closed container when told
that there are, say, seven items in the container, by touching the container where they believe items
might be hidden in synchrony with uttering number words. Because they concentrate on generating
images of the items they are counting, they can easily become lost in counting and stop fortuitously.
Counting figurative unit items is a step in interiorizing the countable items, which produces abstract
unit items (Steffe et.al, 1983). If the child also interiorizes the acts of counting, I mark this
monumental event by referring to it as the stage of the initial number sequence (INS). Spontaneously
counting-on is the indication of the INS (Steffe, & Cobb 1988).

To illustrate some of the constraints that I experienced when teaching CPUI, I recount my
experience teaching three such children at the start of their first grade in school. I taught them
approximately 60 times in teaching episodes over their first two school years to explore their
progress in the construction of counting-on (Steffe, & Cobb, 1988). Although these children also
participated in their regular mathematics classrooms, they did not spontaneously count-on in spite of
my best efforts to provoke it and, presumably, the best efforts of their teachers. It wasn’t until their
3" Grade that at least one of them had constructed counting-on. Based on my experience in working
in teaching experiments and teacher education at UGA and data that were supplied to me by
Professor Bob Wright of Southern Cross University, Australia, who started the Mathematical
Recovery Program (Wright, Martland, & Stafford, 2000; Wright, Stewart, Stafford, & Cain, 1998), 1
estimate that 40% of entering first graders in the United States are CPUI. Of this estimate, Professor
Wright commented that, “I think that is a good estimate for the number in the perceptual stage or
lower, that is the children who can't yet count perceptual items. I think the percentage would be
lower in Australia and New Zealand, say about 30%” (Personal Communication).

Of the 40% who enter the 1% Grade as CPUI, I expect that a majority of them to construct
counting-on during their 3™ Grade [Wright estimated that from 5 to 8% might not be counting-on by
the 3 Grade]. From that point on the relative percentages are not certain, but because of the length
of time and the great difficulties we had in teaching experiments in engendering progress beyond
counting on (Biddlecomb, 2002, Hackenberg, 2005; Tillema, 2007), my best estimate is that
approximately 30% of the children entering the 6™ Grade will be only able to count-on. And those
who are at that stage will remain there until their 8" Grade. Wright’s estimate was, “that about 30%
of kids entering the 6th Grade in the US will only be able to count-on” (Personal Communication).

I consider this program as the most important research program in mathematics education today.
My appeal to those who choose to work in such an intractable but crucial research program is to learn
how to teach these children in such a way that they do not lose confidence. My practitioner’s maxim
is that children are never wrong; even children who are CPUI. An adult can easily induce “mistakes”
in these children, but my basic and pervasive assumption is that children are rational beings and our
responsibility is to find ways of acting and interacting that are not only harmonious with their ways
and means of operating, but will also affect them in productive ways. It is crucial to re-establish the
NCTM’s vision of mathematics for all.
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The Second Research Program

The second research program is to construct quantitative mathematics curricula for children
who enter their first grade as CFUI or children who can only count-on (1) in the construction of
operative measuring schemes, and (2) in the construction of adding and subtracting schemes as
reorganizations of their operative measuring schemes during their first two grades in school.

Children who enter their first grade as CFUI have a quite different constructive trajectory than
those who enter as CPUI. It is possible for CFUI to construct the INS by means of a metamorphic
accommodation by the end of their first grade in school (Steffe & Cobb, 1988, pp. 308ff). By the end
of the second grade, it is possible for their INS to undergo another metamorphic accommodation in
the construction of the explicitly nested number sequence (ENS), which is indicated when children
spontaneously count-up-to (Steffe, 1992, 94: Steffe & Cobb, 1988).

There are three principal operations of the ENS that were not available to children who have
constructed only the INS. The first is that units of one have been constructed as iterable units; for
example, at noon a grandfather clock strikes one twelve times in contrast to simply making 12
chimes. The second is that any initial segment of a (finite) number sequence can be disembedded—
“lifted”— from the complete sequence without destroying the sequence.™" The remainder of the
initial segment in the sequence can be also disembedded from the sequence and the numerosity of the
remainder can be found by counting its elements starting with “one.” This way of counting is
referred to as the recursive property of the ENS in that children can take the number sequence as its
own input (Steffe & Cobb, 1988). That is, children who have constructed the ENS can willfully
create their own countable items using elements of their number sequence and count these elements
using the same number sequence that was used to create the countable items. It is as if the child has
two number sequences “side by side,” one to use to create countable items and the other to count the
countable items. ENS children have more “mathematical power” than do INS children, to borrow a
phrase from the California Mathematics Framework. So, there are three distinct stages in children’s
construction of their number sequences entering their first grade in school; CPUI, CFUI and the INS,
and the ENS. There is a more advanced number sequence that only rarely can be observed that is
referred to as the generalized number sequence (GNS; Ulrich, 2014, 2016)

My best estimate is that children who enter their first grade as CFUI or who can only count-on
comprise 45% of the first-grade population. Table 1 contains my best estimates of the percent of
children who enter their first grade in each of the three number sequence types. The question of
whether stage shifts can be engendered by means of specialized interactions has been

Table 1: Number Sequence Type Across Grades for Children Who Enter their First Grade
Counting-on (INS) or as CFUL.

Grade/N Seq. CFUI or INS ENS GNS

First ~ 45 Percent ~ 10 to 15 Percent ~ (0 to 5 Percent
Second ~ 30 Percent ~ 25 to 30 Percent ~ (0 to 5 Percent
Third ~ 5 Percent ~ 45 to 50 Percent ~ (0 to 10 Percent

worked on by Norton and Boyce with an eleven-year old child (2015). These authors did
demonstrate that by working intensively with the child individually in 14 teaching sessions, he did
make progress in reasoning from one level of units (INS) to two levels of units (ENS). The authors
note, however, that,
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Cody did not seem able to coordinate units in continuous contexts in the same way he could in
discrete contexts... We conjecture that that limitation is due to the lack of physical referents for
the embedded units within composite units that are continuous. For example, a tablespoon
contains three teaspoons, but these three units are not as evident within the tablespoon as they
would be with three chips within a cup. Rather, students have to produce the units within a
continuous composite unit through some kind of segmenting or partitioning activity (Steffe,
1991a), which involves breaking down the composite unit. (Norton & Boyce, 2015, p. 229)

Children who have constructed the ENS and, hence, two levels of units, do use their number
concepts spontaneously in partitioning continuous units. So, there is always an issue of the
generality of the learning process when the situations used in the teaching experiment are with only
one type of quantity. According to some authors, a fundamental question that pervades mathematics
education today is whether mathematical thinking begins with counting or with comparisons of
quantity (Sophian, 2007). Based on the work of Davydov (1975) and influenced by Doughtery
(2004), Sophian (2007) commented that, “The most fundamental idea I have derived from those
papers is the idea that mathematical thinking begins, not with counting, but with comparisons
between quantities, in particular the identification of equality and inequality relationships” (p. xiv).
This notion of quantity is based on Davydov’s (1975) formal definition that a quantity is any set for
the elements of which criteria of comparison have been established. However, establishing the
quantitative property of a composite unit called its numerosity and the quantitative property of a
continuous item called its length precedes a need for comparing the numerosity of two collections or
the length of two continuous items (Steffe, 1991a). So, it’s not a matter that mathematics begins with
comparisons between quantities be they discrete or continuous. Rather, one might say that
mathematics begins with establishing the quantitative properties of objects (Steffe, 1991a). This fits
with Thompson’s (1994) notion of a quantity as, “composed of an object, a quality of that object, an
appropriate unit or dimension, and a process by which to assign a numerical value to the quality” (p.
184). This idea of quantity, both discrete and continuous, leads to the following reorganization
hypothesis.

Reorganization Hypothesis: Operative measuring schemes and their use in constructing adding
and subtracting schemes can emerge as reorganizations of children’s INS.™"

In this hypothesis, the main goal is for children to use their INS in measuring activity in order to
transform the measuring activity, such as described in CCSSM standard 1.MD.2 stated below, into
operative measuring schemes and to what Thompson, Carlson, Byerley, & Hatfield, (2014) referred
to as additive measurement.

Express the length of an object as a whole number of length units, by laying multiple copies of a
shorter object (the length unit) end to end; understand that the length measurement of an object is
the number of same-size length units that span it with no gaps or overlaps. Limit to contexts
where the object being measured is spanned by a whole number of length units with no gaps or
overlaps.

It is important to note that this CCSSM standard is written in such a way that emphasizes the activity
of measuring. After actually measuring linear objects to establish how to measure and the units used
in measuring, INS children can engage in operational measuring activity such as finding the length
of a 64-inch string after it is increased by seven inches. If operational measuring is generalized
across other quantities such as time, money, temperature, weight, etc., children can construct
operational measuring schemes that they could use as if they were using the INS in discrete
quantitative situations. They could also be asked to find, say, how many tablespoons of powder
could be made from nine teaspoons of powder to engender the construction of composite units—or
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units of units—which, at this point, I consider as essential in engendering a metamorphosis of the
“INS measuring schemes.” Furthermore, in the case of discrete quantity, children construct adding
and subtracting schemes as reorganizations of their number sequences (Steffe, 2003). So, by the
children using their INS in the construction of operative measuring schemes, they can in turn use
their measuring schemes in the construction of operative adding and subtracting schemes across
different quantitative contexts. My hypothesis is that if a stage shift is observed from an INS to an
ENS measuring scheme in the case of one type of quantity, a corresponding stage shift will be
observed in all of the measuring schemes that the INS was used in establishing. Such a constructive
generalization would lead to considerable mathematical power of the children, to borrow a phrase
from the California standards.

For children who are CFUI, engaging in measuring activity that includes counting activity
extends the goals, situations, activities, and results of their figurative counting schemes. Similar to
the INS children who use their counting schemes in measuring activity, the effects of the CFUI using
their figurative counting schemes in measuring activity is yet to be determined. Still, it is possible
that their measuring activity could serve in engendering metamorphic accommodations like that
which produces the INS (cf. Steffe, & Cobb, 1988, pp. 306 ff) if for no other reason than a
teacher/researcher could capitalize on children’s need to measure things in such a way that provokes
monitoring re-presentations of measuring activity.

The Third Research Program

The third research program is to construct quantitative mathematics curricula for ENS™
children in the construction of extensive quantitative measuring schemes and their use in

constructing adding, subtracting, multiplying, dividing, and numeration schemes in which
strategic reasoning and relationships between quantities are of primary importance.

I agree with Smith & Thompson (2007) that an emphasis on quantitative reasoning needs to
begin early on in children’s mathematics education and that building quantitative reasoning skills for
the majority of students is not a one or two-year program. Their paper concerned how a shift in
current school curricula could emphasize quantitative reasoning, whereas my emphasis is on
constructing a quantitative mathematics for children based on abstractions from actually teaching
children to establish learning trajectories in the sense that Ellis (2014) explained. In this context, it is
critical to understand what schemes can be considered as extensive quantitative schemes, which I
refer to as genuine measuring schemes. Rather than think of extensive quantities as substances as
would be the case when considering 5/4 as referring to a point on the number line, von Glasersfeld &
Richards (1983) pointed out that Gauss focused on extensive quantities as relations.

To forestall the idea that the extensive quantities he is referring to are a matter of inches or
degrees, Gauss hastens to add that mathematics does not deal with quantities as such, but rather
with relations between quantities. These relations he calls “arithmetical” and in arithmetic, he
explains, quantities are always defined by how many times a known quantity (the unit), or an
aliquot part of it, must be repeated in order to obtain a quantity equal to the one that is to be
defined, and that is to say, one expresses it by means of a number” (pp. 58-59).

The ENS is the first numerical counting scheme that qualifies as an extensive quantitative
scheme in that any number such as 50 can be conceived of as one fifty times as well as 50 ones. The
other operations of the ENS are also critical in constituting this scheme as an extensive discrete
quantitative measuring scheme. So, by viewing the construction of measuring schemes more
generally as reorganizations of the operations that produce the ENS, the hypothesis is that the
measuring schemes will emerge as extensive quantitative schemes.

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 44

The Fourth Research Program

The fourth research program is to construct quantitative mathematics curricula for children in
(1) the construction of quantitative measuring schemes as reorganizations of their fraction
schemes,™" and (2) the construction of multiplicative and additive measuring schemes as
reorganizations of their fraction schemes.

A reorganization hypothesis that was fundamental in the work of IRON that centered on
children’s construction of fraction schemes was that children’s fraction schemes can emerge as
accommodations in their numerical counting schemes. The fraction schemes that emerged were of a
different genre than the number sequences that were used in their construction primarily because
children used their number sequences (or concepts) in partitioning in their construction of fraction
schemes.™" Two basic fraction schemes that emerged were the partitive and the iterative fraction
schemes.

The partitive fraction scheme. When ENS children use their number concepts in partitioning,
they establish an equi-partitioning scheme (Steffe & Olive, 2010, p. 75ff). For example, when the
number concept five is used in partitioning a candy bar, say, an estimate can be made of where to
mark off one of five equal parts. Once a mark is made, the child can disembed the marked part
(mentally or physically), use it in iterating to make five equal parts, and mentally compare the five
parts to the original bar to test if the five parts together are equivalent to the original bar. If a child
considers that the disembedded part is one out of five equal parts, or a fifth of the candy bar, this
produces the first genuine fraction scheme that is referred to as the partitive fraction scheme (PFS;
Tzur, 1999).

The iterative fraction scheme and fractional numbers. For children who have constructed the
ENS and the PFS, it would seem that the CCSSM Standard 4.a under Number and Operations—
Fractions would be appropriate for these children.

Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to
represent 5/4 as the product 5%(1/4), recording the conclusion by the equation 5/4 = 5x(1/4).

This standard was meant to illustrate how multiplying a fraction by a whole number might be
modeled by a mathematics teacher in a straightforward way. But it doesn’t explain the operations
that are involved in children constructing fractions as fractional numbers. There is a scheme in the
fractional knowledge of children, the iterative fraction scheme (IFS), where the fraction 5/4 is
constituted as a fractional number; as five times one fourth of the candy bar (Steffe, & Olive, 2010,
p. 333ff). The structure of the “candy bar” produced consists of a unit of units of units. That is, as a
composite unit containing a composite unit comprised by 4/4 of the candy bar and one more partitive
unit fraction. Once constructed, children can use the scheme to produce fractional connected number
sequences {1/4,2/4,3/4,4/4, 5/4, 6/4, ...} that are constructive generalizations of their explicitly
nested number sequence (Steffe, & Olive, 2010, p. 333ff) . This is the first fraction scheme that can
be judged as an extensive quantitative scheme. The PFS constructed using the ENS is still
constrained to the fractional whole. The construction of fractional numbers is not in the zone of
potential construction of the children who have constructed the PFS in any short-term sense because
it involves a stage shift from two to three levels of units coordination.

The splitting scheme. The splitting scheme, which is a reorganization of the equi-
partitioning scheme, is used in the construction of fractional numbers. The splitting scheme is
indicated when children can mentally produce a hypothetical stick that can be iterated seven times
when given a stick and told that the given stick is seven times longer than their stick and are asked to
make their stick. After the splitting scheme is constructed, if a child mentally splits a stick into, say,
48 parts, the child knows that one of the parts would be one forty-eighth of the whole stick because
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the whole stick is 48 times as long as the part. The result of the scheme is an inverse multiplicative
relation between the part and the partitioned whole in the sense that Gauss specified extensive
quantitative relations (cf. also Thompson, & Saldana, 2003).

Assessments of fifth through eighth grade children. With this brief introduction to the PFS
and the IFS, I now turn to assessments of fifth, sixth, seventh, and eighth grade children concerning
these schemes. Norton & Wilkins (2009) found that only 34% of the fifth graders and 35% of the
sixth graders in their sample could engage in splitting, which is an indication of the presence of the
operations that produce three levels of units™". Of those same children, only 14% and 20%,
respectively, provided some indication of having constructed the iterative fraction scheme.™™ In
other assessments, Norton & Wilkins (2010) found that only 13% of their seventh grade sample and
19% of their eighth grade sample could produce the fractional whole when given, say, a stick
partitioned into three parts and told that it was three sevenths of a candy bar and asked to draw the
whole candy bar, which I consider as an assessment of fractional numbers.”™ 1In their earlier study
Norton & Wilkins (2009) reported similar percentages for their fifth and sixth grade samples (14%
and 18%). These data are consistent with an analysis of the percentages of children at one, two, and
three levels of units that I present in Table 2 in which Norton’s and Wilkins’ data are included.

Table 2: Estimated Percent of Children at Each Level of Units by Grade

Grade/Level One Level Two Levels Three Levels IFS
Third 45 45 10

Fifth 35 40 25 (34%)NV (14%) ™V
Sixth 30 30 40 (35%)NV (18%) ™V
Seventh (13%) ™
Eighth (18%) ™"

It is especially disconcerting that only approximately 15.5% of Norton & Wilkins’ seventh and
eighth grade sample indicated that they had constructed a fraction as a multiplicative concept. It’s
disconcerting because, based on my own estimates, at least 40% of this sample should be able to
construct a fraction as a multiplicative concept; that is, they should have been able to construct the
IFS. But this expectation is tempered by the realization that the children in the fractions project
constructed the iterative fraction scheme by working with us in teaching experiments. The fraction
standards of the CCSSM are stated by grade level and as such underestimate what children who have
constructed three levels of units can accomplish. On the other hand, children who have constructed
two levels of units are constrained to constructing the PFS, a scheme that children use to construct
proper fractions. What this means is that approximately 45% of the third-grade population, 40% of
the fourth grade population, and 30% of the sixth grade population are able to construct partitive
fractions, but not fractional numbers. When combined with the children who have constructed only
one level of units throughout these three grade levels, we see that approximately only 15% of the
third graders, 25% of the fourth graders, and 40 percent of the sixth graders will be able to construct
the IFS and engage in producing fractional numbers.

Recommendations of the NMAP. Children’s construction of fractions as well as the teaching
of fractions must be changed. In the report of the National Mathematics Advisory Panel (2008), the
following comment was made.
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Difficulty with learning fractions is pervasive, and is an obstacle to further progress in
mathematics and other domains dependent on mathematics including algebra. ... Conceptual and
procedural knowledge about fractions with magnitudes less than 1 do not necessarily transfer to
fractions with magnitudes greater than 1. Therefore, understanding of fractions with magnitudes
in each range needs to be taught directly and the relation between them discussed. (p. 28)

Apparently, the authors of this report believed that fractions (proper and improper) can be taught
directly to children regardless of the levels of units the children have constructed. The report of the
panel, as [ interpret it, exemplifies an empiricist as well as a neo-behavioristic agenda in the teaching
of mathematics in precollege education that harks back to Thorndike’s influence on the teaching of
mathematics during the first one-half of the last century. Still, I do agree with the writers of the
report concerning the pervasive difficulty that the learning of fractions presents to schoolboys and
schoolgirls and also to the pervasive difficulty that the teaching of fractions presents to their
mathematics teachers. Resorting to direct teaching in an attempt, for example, to raise children who
have constructed only the PFS to the IFS could be interpreted as a more or less empirical enterprise
and as generating a whole industry of empirical research on mathematical learning, to paraphrase
Michael Cole’s (2004) comments concerning the training studies of the 1960’s that were conducted
to prove Piaget wrong. In contrast, for the children who have constructed at least the partitive
fraction scheme, my hypothesis is that quantitative measuring schemes can emerge as reorganizations
of children’s fraction schemes.

This hypothesis is similar to the hypotheses in the second and third research programs that
additive measuring schemes can be constructed as reorganizations of children’s number sequences.
It is quite different, however, in that partitioning is a fundamental operation in the construction of the
measuring schemes, which opens the way for children to construct measuring schemes involving two
levels of units; for example, meters and centimeters, minutes and seconds, pounds and ounces, weeks
and days, etc. Measuring systems in multiple levels of units might still be problematic. It is
especially crucial to investigate possible changes that indicate fundamental transitions between
reasoning with two levels of units and three levels of units induced in the construction of quantitative
measuring schemes and their use in the construction of multiplicative and additive measuring
schemes.

The Fifth Research Program

The fifth research program is to construct quantitative mathematics curricula for children in
their construction of the rational numbers of arithmetic and the rational numbers, and the
schemes and operations entailed in and by these constructions.

Fractional numbers are a major achievement of children who can use three levels of units as
assimilating operations, but fractional numbers are not equivalent to the Rational Numbers of
Arithmetic nor to the Rational Numbers. Constructing the rational numbers of arithmetic involves
the operations that generate the generalized number sequence (cf. Ulrich, 2014, p. 256). To
exemplify those operations, an eight-year old child, Nathan, was presented with copies of a string of
three toys and a string of four toys and asked to make 24 toys. Nathan reasoned out loud as follows,

Three and four is seven; three sevens is 21, so three more to make 24. That’s four threes and
three fours! (Steffe & Olive, 2010, p. 278)

In solving the task, Nathan integrated a unit of three and a unit of four into a unit of seven, iterated
the unit of seven three times to produce 21, increased 21 by three to produce 24, disunited 21 into
three threes and three fours, integrated the additional three with the three threes, and produced four
threes and three fours. These operations are operations of a GNS. In a GNS, any composite unit can
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be taken as the basic unit of the sequence in such a way that the composite unit implies the sequence
just as the unit of one implies the ENS. Similar to the ENS, in the GNS a child can establish two
number sequences “side by side”, a sequence of units of three and a sequence of units of four and
combine the basic units of each sequence together to produce another sequence of units of seven.
What this amounts to is the coordination of two three-levels of unit structures.

The rational numbers of arithmetic can be regarded as those operations that can be used to
transform a given fraction into another given fraction; that is, the operations that are involved in
quotitive fraction division. Quotitive fraction division involves the coordination of two three-levels
of units structures; units within units within units. For example, consider a case where a child is
given a segment that is said to be 1/5 of a unit segment and another segment that is said to be 1/3 of
the same unit segment, and asked to use the 1/3-segment to produce the 1/5-segment. If the child
partitions the 1/3-segment into five parts, takes one of these parts as a 1/15-segment and iterates this
segment three times to produce the 1/5-segment, and if the child abstracts the operations as 3/5 of
1/3, then 3/5 is referred to as a rational number of arithmetic. After operating, I would also want to
know if the child knows that 3/5 of the 1/3-segment is the 1/5 segment without actually taking 3/5 of
the 1/3-segment. I would also want to know if the child can engage in reciprocal reasoning and
understand that 5/3 of the 1/5-segment is the 1/3-segment (Hackenberg, 2010, 2014; Thompson &
Saldanha, 2003; Thomson, et. al., 2014).XXXi The child is aware of the operations needed, not only to
reconstruct the unit whole from any one of its parts, as in the case of fractional numbers, but also to
produce any fraction of the unit whole starting with any other fraction, which are the operations
involved in quotitive fraction division. (cf. Olive, 1999, for an interpretation of the schemes and
operations involved in the production of the rational numbers of arithmetic). My hypothesis is that
construction of the rational numbers of arithmetic entails a metamorphic accommodation relative to
fractional numbers, and learning how to engender this accommodation and the constructive
possibilities it entails is included in the first part of the fifth research program.

One might think that the distinction between the rational numbers of arithmetic and the rational
numbers is “simply” that the latter involve negative as well as positive rational numbers of
arithmetic. But that is not the case at all. My hypothesis is that a scheme of recursive distributive
partitioning operations is involved in constructing rational numbers. In general, distributive
partitioning operations are those operations that allow a student to share n units among m people and
interpret one share as n/m of one unit and as 1/m of all n units (Liss, 2015; Steffe, Liss, & Lee, 2014;
Lamon, 1996). Distributive partition operations are involved in what Thompson et al. (2014)
referred to as “Wildi Magnitudes”. The power of Wildi’s definition of magnitude is that it makes
explicit the fact that, “the magnitude of a quantity is invariant with respect to a change of unit”
(Thompson, et. al., 2014, p. 4). So, if a quantity measures 22 inches, and if there are 12 inches/foot,
then the quantity also measures 22inches/(12 inches/foot), whose transformation into 22*(1/12 foot)
or 22/12 feet involves rational number of arithmetic operations. It also involves use of a scheme of
recursive distributive partitioning operations because, according to Thompson (2014), “When a
person anticipates that any measurement of Q™™ with respect to an appropriate unit can be expressed
in any other (emphases added) appropriate unit by some conversion without changing Q’s
magnitude, she possesses Wilde’s meaning of magnitude” (p. 4)

When the scheme of recursive distributive partitioning operations can be used to produce what I
would consider an equivalence class of fractional numbers, I would judge that the child has
constructed a rational number. " T hypothesize that the construction of the rational numbers
constitutes a stage shift relative to the rational numbers of arithmetic, and learning how to engender
this stage shift and the constructive possibilities it entails is included in the second part of the fifth
research program. The scheme of recursive distributive partitioning operations that is involved in the
construction of rational numbers is also involved in the construction of intensive quantity (Liss,

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 48

2015; Steffe, et al., 2014). The main difference is that intensive quantity involves relative
magnitude, which means that a quantity is measured using a quantity of a different nature
(Thompson, et al., 2014). In the case of rational numbers, a quantity is measured using a unit
quantity of the same nature as the quantity to be measured.

The Sixth Research Program

The sixth research program is to construct quantitative mathematics curricula for children in
their construction of integers and rational numbers as measures of change in an unsigned
quantity, where “unsigned” refers to the magnitude of the quantity, and operations with them.

Based on work by Thompson & Dreyfus (1988), Ulrich (2014) defined an integer as a measure of
change in an unsigned quantity, where “unsigned” refers to the magnitude of the quantity.
Concerning integer addition, Ulrich (2014) commented that,

Unlike in unsigned addition, in which the second addend can have a different quality than the
first addend, the addends in this case need to be of the same type in the mind of the student.
Depending on the relative magnitudes, the sum could be a subsequence of either addend. ... I
hypothesize that a student will need to have constructed the GNS in order to conceptualize
addition in this way, precisely because both addends need to be reified composite units (which
seems to correspond to iterability and the ability to disembed while maintaining a nested
relationship) so that the sum can be disembedded from either addend (p. 256).

Ulrich’s hypothesis concerning the operations that are needed to construct integer addition leaves
open the question of the operations that are needed to construct the concept of an integer other than
her comment concerning “reified composite units.” I interpret the meaning of a “reified composite
unit” in terms of Thompson’s (1994) hypothesis that, “an integer is a reflectively abstracted constant
numerical difference” (p. 192). So, Ulrich’s hypothesis concerning the operations needed to
construct integer addition also pertains to the construction of the concept of integers. Although it
might seem unusual that the operations needed to construct integers are two steps beyond the
operations that are needed to construct the natural numbers of the ENS as extensive quantities, all of
the operations of the ENS have to be reorganized and extended to produce an integer as a difference
of two such natural numbers. That is, as a reflectively abstracted concept, an integer is the difference
of any two signed quantities a and b, denoted by a — b, such that a — b is a constant number of units
between @ and b in the direction from b to a. This concept of an integer is crucial in algebraic
reasoning and should not be finessed by using the sum of a and the additive inverse of b as the
definition of a difference a — b like it is done in CCSSM.

I extend this way of regarding integers to the construction of signed rational numbers, where
rational numbers are regarded as magnitudes in the way that [ regard them in the above text. Based
on my experience teaching middle school children in teaching experiments as well as teaching
prospective middle school mathematics teachers, finding sums and differences of signed quantities
whose magnitudes are rational numbers will require at least a constructive generalization of integer
operations. Furthermore, although the product and quotients of signed quantities are rarely
considered in studies of children’s mathematics, they are fundamental as preparation for more
general algebraic reasoning and involve constructive generalizations of rational number of arithmetic
operations. Constructive trajectories also need to be established in which students establish the laws
of signs for products as a logical necessity as well as patterns of reasoning that might be recognized
as distributive, associative, and commutative reasoning.

Finally, because of the preponderance of children who are yet to construct the rational numbers
of arithmetic or even fractional numbers in the middle school and beyond, it is essential to explore
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what a quantitative mathematics curricula involving signed quantities might look like for children
who have constructed only three levels of units. This problem is especially acute for children who
have constructed only two levels of units.

The Seventh Research Program

The seventh research program is to construct quantitative algebraic curricula for children in the
construction of basic algebraic knowing.

The first aspect of the program is to learn the operations that are involved in children’s
construction of combinatorial reasoning. My hypothesis is that the concept of natural number
variable is essential. Even children who can reason with three levels of units make extensive lists
when finding the possible outcomes of two or more events that occur together rather than reason with
compositions of natural number variables (Panapoi, 2013). Further, my hypothesis is that the
multiplicative principal of combinatoiral reasoning and the dimensionality involved in spatial
coordinate systems (Lee, 2017) both involve recursively coordinating two three levels of units
structures. Lockwood ( 2015), in her work with college students, and Panapoi (2013) and Tillema
(2007, 2013, 2014), in their work with middle grade students of differing levels of units, have made
substantial progress in this program. But extensions of their work are needed to establish
mathematics curricula for children involving combinatorial reasoning across differing levels of units.

The second part of this research program is to extend the fifth and sixth research programs to
working with operations on quantities of unknown measurements, which could be considered as
“generalized arithmetic.” An extensive quantitative unknown refers to the potential result of
measuring a fixed but unknown extensive quantity before actually measuring it (Liss, 2015, p.30).
An intensive quantitative unknown refers to the potential result of enacting the operations that
produce a fixed but unknown equivalent ratio. The production of such a ratio implies the availability
of the operations needed to produce an equivalent ratio and, thus, a proportional relationship (Liss,
2015, pp. 31-32). Hackenberg (2005, 2010, 2013, 2014), Hackenberg & Tillema (2009), Hackenberg
& Lee (2015), and Liss (2015) have made substantial progress in this program by working with
students of differening levels of units. An extension of this work is needed so that quantitative
algebraic curricula for children are established across differing levels of units.

The third part of this research program is highly related to the second part. It is to construct
quantitative algebraic curricula for children concerning the construction of the basic rate scheme and
its use in the construction of linear functions. Given two co-varying quantities, I consider a rate as
the result of enacting the operations that produce a ratio equivalent to a unit ratio at any but no
particular time (Steffe, et al., 2014, p. 52). The basic rate scheme can be considered as a
metamorphosis of intensive quantitative unknowns and proportional reasoning. One might consider
the result of enacting a rate formally as an equivalence class of ratios, but that doesn’t say anything
about the involved metamorphic accommodation that produces rate. Toward that end, Thompson’s
(1994) commented that, “A rate is a reflectively abstracted constant ratio, in the same sense that an
integer is a reflectively abstracted constant numerical difference” (p. 192). Although I agree with
this way of thinking about a rate, it too doesn’t specify the operations that children use to produce the
reflective abstraction. There are various studies that contribute to understanding such mental
operations (Ellis, Ozgiira, Kulowa, Williams, & Amidonba, 2015; Hackenberg, 2010; Hackenberg &
Lee, 2014; Johnson, 2012, 2014; Liss, 2015; Moore, 2014, Thompson, 1994; Tillema, 2013). But
how teacher/researchers might provoke such a reflective abstraction is a fundamental problem in
establishing quantitative algebraic curricula for children across differing levels of units.
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Endnotes

"I surmise that, in part, it was because of what was considered as sufficient to falsify a theory
during that period of time. According to Lakatos (1970) all justificationists, “whether the
intellectualists and empiricists, agreed that a ‘hard fact” may disprove a universal theory” (p. 94).

i Thorndike considered himself a connectionist, which I regard as a form of behaviorism, but not
radical behaviorism.

i There was also an emphasis on social interaction, active citizen participation in all spheres of
life, and democratization of public education.

¥ Comment in brackets is added to the quotation.

¥ (http://www.eds-resources.com/facultytheory.htm)

" (http://schugurensky.faculty.asu.edu/moments/1938rugg.html)

Y (http://www.uvm.edu/~dewey/articles/proged.htm)

Vil Wertheimer was one of the three founders of Gestalt psychology along with Kurt Koffka and
Wolfgang Kohler.

T attended a sequential summer institute for secondary school mathematics teachers during the
summers of 1961, 62, and 63 at Kansas State Teachers College, Emporia, Kansas. There were no
courses on teaching via problem solving that emphasized discovery learning by students although we
did solve a lot of mathematical problems!

* James W. Wilson offered a course on problem solving for MEd and Ph.D. students at the
University of Georgia for many years.

* There were modern programs that did emphasize experiential learning of mathematics (Davis,
1990).

*I Pjaget’s grouping structures served as an abstracted model of the reasoning of children in what
Piaget called the concrete operational stage.

*iil piaget thought that the construction of the length unit was more advanced than the
construction of the arithmetical unit.

VT am indebted to Dr. Larry Hatfield for his colleagueship and insight that led us to teach 1*' and
2" grade children in order to learn children’s thinking.

* A mathematician writer of the content standards told me that the standards are designed so that
students can take college mathematics courses.

™ In some cases, students can opt out of taking these tests.

il In constructivist research, Maturana’s concept of the observer is essential. According to
Maturana (1978), “Everything said is said by an observer to another observer who can be himself or
herself” (p. 31).

Wi «Students” can be substituted for “children”. I use “children” throughout the paper to be
consistent.

X Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself.

* Cf. Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and
Fractional Reasoning to Improve Students’ Preparedness for Middle School Mathematics, Dr. Ron
Tzur, Principal Investigator.

i Cf. AIMS Center for Math and Science Education

il Cf. the work of Dr. Robert Wright’s US Math Recovery Council.

il Twenty-nine, say, can be disembedded from fifty while leaving it “in” fifty.

IV In stating this hypothesis, I assume that in the case of continuous quantity, children will
primarily use units like inches, pounds, etc., in segmenting.

¥ This research program is not restricted to six-year-old children.

*¥ Cf. Hackenberg, Norton, & Wright (2016) for an excellent start on this problem.
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i A number concept such as five is a composite unit containing five arithmetical unit items
containing records of counting “1, 2, 3,4, 5.”

¥ Hackenberg (2007) found that some children who constructed only two levels of units could
engage in splitting.

X These authors referred to this scheme as the generalized measurement scheme for fractions
(GMSF).

* These authors referred to this scheme as the measurement scheme for proper fractions
(MSPF).

*xi Reciprocal reasoning of the kind Thompson, et al. (2014) identified involves coordinating two
three-levels of units structures.

*xi () is taken as 22 inches in length.

*i 1 did not observe a child construct what might be called an equivalence class of fractions
even in the case of the GNS children (Steffe, & Olive, p. 3371Y)
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